Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Quảng Ninh

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Quảng Ninh Đề thi Học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Quảng Ninh Chào các thầy cô và các em học sinh lớp 9! Đây là đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức. Kỳ thi sẽ diễn ra vào thứ Ba ngày 14 tháng 03 năm 2023. Dưới đây là một số câu hỏi trong đề thi: Với n là số nguyên, chứng minh rằng giá trị của biểu thức A = 3n3 - 3n2 + n + 1 không chia hết cho 125. Tìm tất cả các bộ ba số nguyên tố (p, q, r) thỏa mãn (p2 + 1)(q2 + 3) = r2 + 21. Cho tam giác ABC nhọn nội tiếp đường tròn (O). Gọi (I) là đường tròn đi qua A và tiếp xúc với BC tại C. Đường trung tuyến AD của tam giác ABC cắt đường tròn (I) tại M. Đường thẳng BM cắt AC và đường tròn (O) lần lượt tại H và F. Đường thẳng CM cắt AB và đường tròn (O) lần lượt tại K và E. Chứng minh DBM đồng dạng DAB. Chứng minh AKMH là tứ giác nội tiếp. Đường thẳng BM cắt đường tròn (I) tại Q. Chứng minh đường thẳng AF đi qua trung điểm của đoạn thẳng CQ. Một phố nhỏ có 44 người trong độ tuổi từ 1 đến 85. Chứng minh rằng trong số những người trên có hai người cùng tuổi hoặc có ba người mà tuổi của một người bằng tổng số tuổi của hai người kia. Hy vọng các em sẽ ôn tập và làm bài thi tốt. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Lâm Đồng : + An mua một chiếc laptop cũ đã qua sử dụng 1 năm tại cửa hàng X với số tiền là 29,6 triệu đồng. Sau khi sử dụng được thêm 3 năm nữa, An mang chiếc laptop đó ra cửa hàng X để bán, cửa hàng mua lại với số tiền 17 triệu đồng. An thắc mắc về sự chênh lệch nhiều giữa giá mua và giá bán nên được nhân viên cửa hàng giải thích về mối liên hệ giữa giá tiền của một chiếc laptop với thời gian sử dụng biểu thị dưới dạng một hàm số y = ax + b (x là số năm sử dụng, y là giá tiền). Hãy tính giá tiền ban đầu của chiếc laptop nêu trên khi chưa qua sử dụng. + Hưởng ứng phong trào viết thư gửi các bạn thiếu nhi tại huyện đảo Trường Sa nhân dịp Tết Nguyên đán, hai bạn Lâm và Đồng mua số tờ giấy trắng bằng nhau và mua số phong bì bằng nhau. Lâm sử dụng một tờ giấy cho mỗi bức thư trong khi đó Đồng sử dụng ba tờ giấy cho mỗi bức thư. Biết rằng, Lâm dùng hết số phong bị đã mua còn dư 10 tờ giấy, Đồng dùng hết số giấy đã mua còn dư 10 phong bì. Tìm số tờ giấy mỗi bạn đã mua. + Một cửa hàng bán giày thể thao mỗi tuần bán được 50 đôi giày với giá là 500 nghìn đồng một đôi. Cửa hàng dự định giảm giá bán, ước tính nếu cứ giảm giá bán mỗi đôi 1 nghìn đồng thì số giày mỗi tuần bán tăng thêm được 1 đôi. Xác định giá bán để mỗi tuần cửa hàng giày thể thao thu được lợi nhuận cao nhất, biết rằng giá nhập về ban đầu cho mỗi đôi giày thể thao là 300 nghìn đồng.
Đề học sinh giỏi Toán THCS năm 2022 - 2023 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào thứ Năm ngày 02 tháng 03 năm 2023.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Hậu Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hậu Giang; kỳ thi được diễn ra vào thứ Tư ngày 01 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Hậu Giang : + Cho đa thức f(x) = x4 − 3×3 + mx + n với m và n là các số thực. a) Phân tích đa thức P(x) = x2 – 4x + 3 thành nhân tử. b) Tìm m và n biết rằng f(x) chia hết cho P(x). + Trong mặt phẳng Oxy, cho hàm số y = 2mx + m + 2 (với m là tham số thực) có đồ thị là đường thẳng d và hàm số y = -x2 có đồ thị là parabol (P). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn x1 < −l < x2. + Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm N khác C sao cho NC < AN. Vẽ đường tròn (O) có tâm O và dường kính NC, đường tròn (O) cắt BC tại E (với E khác C) và cắt đường thẳng BN tại D (với D khác N). 1) Chứng minh tứ giác ABCD nội tiếp. 2) Chứng minh ABN = AEN và NE là tia phân giác của AED. 3) Giả sử EN cắt CD tại F. Chứng minh ba điểm A, B và F thẳng hàng.
Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Kon Tum
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Kon Tum : + Cho hàm số f(x) = (m – 1)x + 3m + 2 có đồ thị là đường thẳng. Đường thẳng cắt trục hoành tại điểm M, cắt trục tung tại điểm N (các điểm M, N không trùng với gốc tọa độ O). Tìm giá trị của m để tam giác OMN cân. + Hai cửa hàng A và B bán cùng một loại bánh với giá 10000 đồng một cái, nhưng mỗi cửa hàng có hình thức khuyến mãi khác nhau: Cửa hàng A: Đối với 5 cái bánh đầu tiên, mỗi cái bánh có giá là 10000 đồng; đối với 5 cái bánh tiếp theo cửa hàng sẽ giảm 4% giá bán. Kể từ cái bánh thứ 11 với mỗi cái bánh khách hàng chỉ phải trả 72% giá bán. Cửa hàng B: Cứ mua 5 cái bánh thì được tặng 1 cái bánh cùng loại. Bạn An có 250000 đồng, hỏi bạn An nên chọn cửa hàng nào trong hai cửa hàng A và B để mua được nhiều bánh hơn? + Cho hình vuông ABCD có cạnh bằng a. Vẽ đường tròn tâm D, bán kính DA. Từ điểm M thuộc cạnh AB (M không trùng với A và B), vẽ tiếp tuyến MN với đường tròn (D)(N là tiếp điểm), tiếp tuyến này cắt đoạn BC tại H. 1) Tính chu vi tam giác BMH theo a. 2) Xác định vị trí điểm M trên cạnh AB để độ dài đoạn thẳng MH nhỏ nhất.