Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nam : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x2 và đường thẳng (d) có phương trình y = 2mx – m2 – m − 2 (với m là tham số). 1. Tìm tọa độ điểm M thuộc (P) biết điểm M có hoành độ bằng –3. 2. Tìm điều kiện của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt. Gọi A(x1;y1), B(x2;y2) là hai giao điểm của đường thẳng (d) và parabol (P), xác định m để x1y2 + x2y1 = 2m3 + 6. + Trong tháng 4 năm 2023, hai hộ gia đình bác An và bác Bình dùng hết tổng cộng 500 nghìn đồng tiền điện. Sang tháng 5 năm 2023, do tăng cường thực hiện việc sử dụng điện an toàn, tiết kiệm và hiệu quả; nhà bác An giảm được 15% tiền điện và nhà bác Bình giảm được 10% tiền điện; kết quả là cả hai hộ gia đình tiết kiệm được tổng cộng 65 nghìn đồng tiền điện so với tháng 4 năm 2023. Hỏi trong tháng 4 năm 2023, mỗi hộ gia đình dùng hết bao nhiêu đồng tiền điện? + Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA, SB với đường tròn (A, B là các tiếp điểm). Một dường thẳng đi qua S (không đi qua tâm O) cắt đường tròn (O;R) tại hai điểm M và N với M nằm giữa S và N. 1. Chứng minh tứ giác SAOB nội tiếp. 2. Chứng minh SB2 = SM.SN. 3. Cho SO = R5 và MN = R2. Gọi E là trung điểm MN. Tính độ dài đoạn thẳng OE và diện tích tam giác SOM theo R. 4. Tiếp tuyến tại M của đường tròn (O;R) cắt SA, SB lần lượt tại P, Q. Gọi giao điểm của OQ, OP với AB lần lượt là I và H. Chứng minh ba đường thẳng OM, QH, PI đồng quy.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT TP Đà Nẵng
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT TP Đà Nẵng Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT TP Đà Nẵng Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT TP Đà Nẵng Chào đón quý thầy cô và các em học sinh lớp 9! Đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông chuyên môn Toán năm học 2022-2023 tại thành phố Đà Nẵng. Đề thi này sẽ được tổ chức vào sáng Chủ Nhật, ngày 12 tháng 06 năm 2022. Đề thi bao gồm các câu hỏi thú vị và thách thức như sau: 1. Cho phương trình x2 - 2x + k2 - 3k - 9 = 0 với k là tham số. Khi phương trình đã cho có hai nghiệm x1 và x2, hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Q. 2. Xét đường tròn (O) bán kính R và điểm A nằm trên đường tròn. Đường tròn (A;R) cắt đường tròn (O) tại hai điểm B và C. Gọi M là trung điểm của AB, tia MO cắt (O) tại điểm D. Tia BC cắt AD tại E và cắt (O) tại điểm thứ hai là F. Hãy tính độ dài đoạn thẳng DE và diện tích tứ giác ACFE theo R. 3. Đưa ra tam giác ABC nhọn có AB < AC, trực tâm H và nội tiếp đường tròn (O). Gọi M là trung điểm của BC và K là hình chiếu của H trên AM. Tia AM cắt đường tròn ngoại tiếp tam giác BKC tại điểm thứ hai là N. Chứng minh rằng tứ giác ABNC là hình bình hành. Hy vọng rằng đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc quý thầy cô và các em học sinh thành công và đạt kết quả cao trong kỳ thi! Hãy cùng nhau vững bước trên con đường học với đam mê và nỗ lực không ngừng. Chúc mọi điều tốt lành đến với tất cả!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 Sở GD&ĐT TP Hồ Chí Minh1. Khuyến mãi mua bánh2. Mối quan hệ giữa nhiệt độ và độ cao3. SEA Games - Môn bóng đá nam Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 Sở GD&ĐT TP Hồ Chí Minh Chào đón quý thầy cô và các em học sinh lớp 9! Hãy cùng Sytu khám phá đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 tại Sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào sáng Chủ Nhật ngày 12 tháng 06 năm 2022. Hãy cùng tìm hiểu một số câu hỏi thú vị trong đề thi nhé: 1. Khuyến mãi mua bánh Ở cửa hàng A và B, giá bán một cái bánh cùng loại đều là 15,000 đồng. Tuy nhiên, hình thức khuyến mãi ở hai cửa hàng này khác nhau. Bạn Hằng cần 13 cái bánh để tổ chức sinh nhật. Hãy tìm cách mua bánh để tiết kiệm nhất! 2. Mối quan hệ giữa nhiệt độ và độ cao Khi một vận động viên leo núi, anh ta nhận thấy nhiệt độ không khí giảm khi càng lên cao. Câu hỏi đặt ra là: Xác định hàm số biểu diễn mối quan hệ này, và giúp bạn Minh biết độ cao của mình khi biết nhiệt độ tại vị trí hiện tại. 3. SEA Games - Môn bóng đá nam SEA Games 31 đang diễn ra tại Việt Nam. Trong môn bóng đá nam, có 5 đội tham gia theo thể thức vòng tròn một lượt. Hãy tính tổng số trận đấu đã diễn ra và xác định xem có bao nhiêu trận hòa trong số đó. Với những câu hỏi thú vị và đa dạng về nội dung, đề thi tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 Sở GD&ĐT TP Hồ Chí Minh chắc chắn sẽ mang lại cho các em cơ hội thử thách bản thân và phát huy kiến thức toán học của mình. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Tây Ninh
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD ĐT Tây Ninh Đề tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD ĐT Tây Ninh Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Tây Ninh. Kỳ thi sẽ diễn ra vào ngày thứ Tư, 08 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 của sở GD&ĐT Tây Ninh: 1. Cho tam giác điều ABC có cạnh a, đường cao AH (H thuộc BC), M là điểm bất kỳ trên cạnh BC. Vẽ ME vuông góc AB tại E và MF vuông góc AC tại F. Gọi O là trung điểm của AM. Hỏi tứ giác OEHF là hình gì? Tìm diện tích nhỏ nhất của tứ giác OEHF khi M di chuyển trên cạnh BC. 2. Đường tròn (O) có đường kính BC, A là điểm nằm trên (O) (AB < AC và A khác B). Đường tròn ngoại tiếp tam giác ABO cắt đoạn thẳng AC tại điểm thứ hai là K. Đường thẳng BK cắt (O) tại điểm thứ hai là L. Cát đường thẳng CL, OK cắt nhau tại I. Hãy chứng minh ba điểm A, B, I thẳng hàng. 3. Cho đường thẳng 28dy =x-3 và parabol y = (x-1)^2. Hãy tìm tọa độ giao điểm của đường thẳng và parabol.
Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Yên Bái
Nội dung Đề tuyển sinh THPT môn Toán (chuyên) năm 2022 2023 sở GD ĐT Yên Bái Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GDĐT Yên Bái Đề thi tuyển sinh THPT môn Toán (chuyên) năm 2022-2023 sở GDĐT Yên Bái Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Yên Bái. Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi: 1. Chứng minh rằng với mọi số tự nhiên n, thì số B = 9.52n + 13.3n luôn chia hết cho 22. 2. Tìm tất cả các cặp số nguyên dương (a;b) sao cho ab là ước của a^2 + b. 3. Cho X là tập hợp gồm 26 số nguyên dương đôi một khác nhau, mỗi số không lớn hơn 100. Chứng minh trong X luôn tồn tại hai số x và y sao cho x - y thuộc tập hợp {5;10;15}. Hy vọng rằng đề thi sẽ giúp các em học sinh làm quen với dạng đề và rèn luyện kỹ năng giải các bài toán Toán chuyên một cách tốt nhất. Chúc các em thi tốt!