Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Hưng Yên Xin chào quý thầy cô và các em học sinh! Hôm nay, Sytu xin giới thiệu đến bạn đề chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Hưng Yên. Đề thi này dành cho các thí sinh dự thi vào các lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hưng Yên: + Bài toán 1: Tìm các giá trị của tham số m để đường thẳng (d): y = (m + 2)x – m – 8 cắt parabol (P): y = x^2 tại hai điểm phân biệt nằm bên phải trục tung và có hoành độ x1, x2 thỏa mãn x1^3 – x2 = 0. + Bài toán 2: Chứng minh rằng bốn điểm O, M, H, I cùng thuộc một đường tròn. Xác định vị trí của điểm M để đoạn thẳng MN có độ dài nhỏ nhất, trong tam giác ABC đều nội tiếp đường tròn (O;R), H là trung điểm của cạnh BC, M thuộc đoạn BH, N thuộc đoạn CA sao cho CN = BM, I là trung điểm của đoạn MN. + Bài toán 3: Một bình thủy tinh hình trụ cao 30cm chứa nước, diện tích đáy bình bằng 1/6 diện tích xung quanh, mặt nước cách đáy bình là 18cm. Cần đổ bao nhiêu lít nước nữa để bình vừa đầy? (Bỏ qua bề dày của bình, cho pi = 3,14 và kết quả làm tròn đến chữ số thập phân thứ nhất). Với những bài toán thú vị và bổ ích như vậy, chúng ta hãy cùng nghiên cứu và giải quyết để chuẩn bị cho kỳ thi tuyển sinh sắp tới nhé! Chúc mọi người thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GD&ĐT Bình Định Đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GD&ĐT Bình Định Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm học 2021 - 2022 của sở GD&ĐT Bình Định. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 11 tháng 06 năm 2021. Hãy chuẩn bị tâm lý và kiến thức một cách chu đáo để vượt qua thử thách này!
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Thuận
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Thuận Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bình Thuận Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bình Thuận Sytu xin gửi đến quý thầy cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021 - 2022 của Sở Giáo dục và Đào tạo Bình Thuận. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 12 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 của Sở GD&ĐT Bình Thuận gồm các câu hỏi sau: Cho x, y, z là các số thực dương thỏa mãn x + y + z = 3. Chứng minh rằng? Cho đường tròn tâm O, đường kính AB. Trên đường tròn lấy điểm D khác A và B sao cho mDAB > 60°. Trên đường kính AB lấy điểm C khác A, B và kẻ HC vuông góc với AD tại H. Phân giác trong của góc DAB cắt đường tròn tại E (E khác A) và cắt HC tại F.DF cắt đường tròn tại điểm thứ hai N. a) Chứng minh ba điểm N, C, E thẳng hàng. b) Cho AD = BC, chứng minh DN đi qua trung điểm của AC. Viết lên bảng 2021 số. Thực hiện thao tác: xóa ba số x, y, z bất kì trên bảng và viết lại số x + y + z + xy + yz + zx + xyz. Tiếp tục thực hiện cho đến khi trên bảng chỉ còn một số. Hỏi đó là số nào? Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 của Sở GD&ĐT Bình Thuận thú vị và đa dạng, giúp các em học sinh rèn luyện và phát triển kỹ năng giải quyết vấn đề một cách logic và sáng tạo.
Đề tuyển sinh môn Toán (chung) năm 2021 2022 sở GD ĐT Bến Tre
Nội dung Đề tuyển sinh môn Toán (chung) năm 2021 2022 sở GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2021-2022 sở GD&ĐT Bến Tre Đề tuyển sinh môn Toán (chung) năm 2021-2022 sở GD&ĐT Bến Tre Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT công lập môn Toán (chung) năm học 2021-2022 sở GD&ĐT Bến Tre. Đề thi bao gồm đáp án và lời giải chi tiết để hỗ trợ các em trong việc ôn tập và chuẩn bị cho kỳ thi sắp tới. Trích đoạn đề tuyển sinh lớp 10 môn Toán (chung) năm 2021-2022 sở GD&ĐT Bến Tre: Cho đường tròn O và điểm M sao cho OM = 6cm. Từ điểm M kẻ hai tiếp tuyến MA và MB đến đường tròn O (A và B là các tiếp điểm). Trên đoạn thẳng OA lấy điểm D (D khác A và O), dựng đường thẳng vuông với OA tại D và cắt MB tại E. Chứng minh tứ giác ODEB nội tiếp đường tròn. Tứ giác ADEM là hình gì? Vì sao? Gọi K là giao điểm của đường thẳng MO và O sao cho O nằm giữa M và K. Chứng minh tứ giác AMBK là hình thoi. Dựa vào hình bên, hãy: Viết tọa độ của các điểm M và P. Xác định hoành độ điểm N. Xác định tung độ điểm Q. Cho đường thẳng 5x + 6y = 2021 + d y m x với m là tham số. Điểm O(0;0) có thuộc đường thẳng không? Vì sao? Tìm giá trị của m để đường thẳng d song song với y = x + 4. File WORD (dành cho quý thầy, cô): [link download]
Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Đà Nẵng
Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Đà Nẵng Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Đà Nẵng Chào các thầy cô giáo và các em học sinh, hôm nay Sytu xin giới thiệu đến bạn đề tuyển sinh lớp 10 môn Toán năm học 2021-2022 của sở GD&ĐT thành phố Đà Nẵng. Hãy cùng xem một số câu hỏi trong đề này nhé: + Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 2021 và hiệu của số lớn và số bé bằng 15. + Một địa phương lên kế hoạch xét nghiệm SARS-CoV-2 cho 12000 người trong một thời gian quy định. Nhờ cải tiến phương pháp, mỗi giờ xét nghiệm được thêm 1,000 người. Địa phương hoàn thành sớm hơn kế hoạch là 16 giờ. Hỏi theo kế hoạch, địa phương này phải xét nghiệm trong thời gian bao nhiêu giờ? + Cho tam giác nhọn ABC có AB < AC, các đường cao BD, CE (D thuộc AC, E thuộc AB) cắt nhau tại H. Chứng minh rằng: a) Tứ giác BEDC nội tiếp. b) Gọi M là trung điểm của BC. Đường tròn đường kính AH cắt AM tại điểm G (G khác A). Chứng minh rằng AE.AB = AC.AM. c) Hai đường thẳng DE và BC cắt nhau tại K. Chứng minh rằng MAC = GCM và đường thẳng nối tâm hai đường tròn ngoại tiếp hai tam giác MBB, MCD song song với đường thẳng KG. Vậy là một số câu hỏi thú vị trong đề tuyển sinh Toán năm học 2021-2022 của sở GD&ĐT Đà Nẵng. Hy vọng các bạn sẽ thấy thú vị và hấp dẫn khi tham gia giải đề này! Chúc các bạn thành công!