Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán lần 1 năm 2023 2024 trường THCS Đắk Ơ Bình Phước

Nội dung Đề thi HSG lớp 9 môn Toán lần 1 năm 2023 2024 trường THCS Đắk Ơ Bình Phước Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 lần 1 năm 2023 - 2024 trường THCS Đắk Ơ Bình Phước Đề thi HSG Toán lớp 9 lần 1 năm 2023 - 2024 trường THCS Đắk Ơ Bình Phước Chào đón quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đọc đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 lần 1 năm học 2023 - 2024 tại trường THCS Đắk Ơ, huyện Bù Gia Mập, tỉnh Bình Phước. Kỳ thi sẽ diễn ra vào ngày 10 tháng 10 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: - Xác định vị trí của 4 điểm C, H, O, I trên đường tròn và chứng minh chúng cùng thuộc một đường tròn. - Chứng minh rằng MC là tiếp tuyến của đường tròn. - Chứng minh K là trung điểm của đoạn thẳng CH. Đối với câu hỏi về tam giác đều ABC, cần chứng minh mối quan hệ giữa các đoạn thẳng AB, AJ, BI khi IKJ là tam giác đều. Để tăng cường kiến thức và kỹ năng Toán của các em học sinh, đề thi cũng bao gồm một bài toán về phép tính với các số thực dương, giúp rèn luyện logic và sự tư duy của các em. Mong rằng đề thi sẽ giúp các em học sinh lớp 9 trường THCS Đắk Ơ Bình Phước tự tin và thành công trong kỳ thi HSG. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hà Nội
Sáng thứ Tư ngày 13 tháng 01 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a2 + b2 + c2 = 1, tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức Q = √(a + b) + √(b + c) + √(c + a). + Tìm tất cả các số nguyên dương x, y, z thỏa mãn 3^x + 2^y = 1 + 2^z. + Cho một hình chữ nhật có diện tích bằng 1. Năm điểm phân biệt được đặt tùy ý vào hình chữ nhật sao cho không có ba điểm nào thẳng hàng (mỗi điểm trong năm điểm đó có thể được đặt trên cạnh hoặc đặt nằm trong hình chữ nhật). a) Chứng minh mọi tam giác tạo bởi ba điểm trong năm điểm đã cho đều có diện tích không vượt quá 3. b) Với mỗi cách đặt năm điểm vào hình chữ nhật như trên, gọi N là số tam giác có ba đỉnh là ba điểm trong năm điểm đó và có diện tích không vượt quá 1. Tìm giá trị nhỏ nhất của N.
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2020.
Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hưng Yên
Đề học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Hưng Yên gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2020.
Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.