Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2024 - 2025 trường THCS Quỳnh Phương - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 trường THCS Quỳnh Phương, thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2024 – 2025 trường THCS Quỳnh Phương – Nghệ An : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nhân ngày sách và văn hóa đọc Việt Nam 21/4/2023, một nhà sách đã có chương trình giảm giá. Bạn An đến mua một quyển sách Toán và một quyển sách Tiếng Anh với tổng giá ghi trên hai quyển sách đó là 150000 đồng. Nhưng quyển sách Toán được giảm giá 20%, quyển sách Tiếng Anh được giảm giá 35% nên An chỉ phải trả tổng số tiền là 108000 đồng. Hỏi giá ghi trên mỗi quyển sách là bao nhiêu? + Nhà An có một cái bể chứa nước hình trụ có đường kính đáy (không tính thành bể) là 1,8m, chiều cao (không tính đáy bể) là 2,5m. Sau khi tháo cạn và dọn sạch bể An dùng máy bơm với lưu lượng nước 3m3/h để bơm nước từ giếng lên bể. An dự tính máy bơm trong thời gian 1,5 giờ sẽ đầy bể. Em hãy tính xem dự tính của An đúng hay sai? (với π ≈ 3,14). + Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC. a) Chứng minh rằng AEHF là tứ giác nội tiếp đường tròn. b) Vẽ đường kính AK của đường tròn (O). Chứng minh: AB.AC = 2R.AD. c) Chứng minh rằng OC vuông góc với DE.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Hòa Bình
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Hòa Bình Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021 - 2022 sở GD&ĐT Hòa Bình Đề tuyển sinh vào môn Toán năm 2021 - 2022 sở GD&ĐT Hòa Bình Xin chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến mọi người Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 của sở GD&ĐT Hòa Bình. Đề thi bao gồm các câu hỏi có đáp án và lời giải chi tiết để các em có thể ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Một số câu hỏi trong đề tuyển sinh bao gồm: Cho tam giác ABC vuông tại A, đường cao AH, biết HB = 2 cm, HC = 8 cm. Hãy tính độ dài các cạnh AB và AC. Một ô tô và một xe máy xuất phát cùng một lúc từ hai tỉnh cách nhau 200km, đi ngược chiều và gặp nhau sau 2 giờ. Hãy tìm vận tốc của ô tô và xe máy, biết rằng nếu vận tốc của ô tô tăng thêm 10 km/h và vận tốc của xe máy giảm đi 5 km/h thì vận tốc của ô tô bằng gấp đôi vận tốc của xe máy. Cho hình vuông ABCD, các điểm M, N thay đổi trên các cạnh BC, CD sao cho góc MAN bằng 45°. Gọi P, Q lần lượt là giao điểm của AM, AN với BD. Chứng minh rằng tứ giác ABMQ và tứ giác MNQP là các tứ giác nội tiếp, NA là phân giác của góc MND, và MN tiếp xúc với một đường tròn cố định. Hy vọng rằng đề thi này sẽ giúp các em tự tin và chuẩn bị tốt cho kỳ thi sắp tới. Chúc mọi người thành công!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội Xin chào quý thầy cô và các bạn học sinh! Sytu xin giới thiệu đến quý vị đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 của trường ĐHSP Hà Nội. Đề thi này bao gồm đáp án và lời giải chi tiết để giúp các bạn ôn tập hiệu quả. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội: - Cho tam giác ABC nội tiếp đường tròn (O) có bán kính R. Điểm D và E là hai điểm cố định trên cát tuyến qua C sao cho D nằm giữa C và E. Gọi M là giao điểm thứ hai của hai đường tròn ngoại tiếp tam giác BCD và ACE. Chứng minh rằng: Tứ giác OBME là tứ giác nội tiếp; CD * CE = CO * R * R; M luôn di chuyển trên một đường tròn cố định. - Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn duy nhất dưới dạng N = 2^(x+y) với x, y là hai số nguyên dương. - Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều là lũy thừa của 2. Biết rằng phương trình ax^2 + bx + c = 0 có hai nghiệm nguyên. Chứng minh rằng hai nghiệm của phương trình trên bằng nhau. Hy vọng rằng đề thi này sẽ giúp các bạn tự tin và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các bạn thành công!
Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình Đề tuyển sinh môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình Sytu mang đến cho quý thầy cô và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Quảng Bình; kỳ thi diễn ra vào ngày 08 tháng 06 năm 2021. Một số câu hỏi trong đề tuyển sinh: 1. Đường tròn O có đường kính AB, dây cung MN vuông góc với AB tại điểm I sao cho AI = BI. Trên đoạn thẳng MI lấy điểm H (H khác M và I), tia AH cắt đường tròn O tại điểm thứ hai là K. Chứng minh rằng: a) Tứ giác BIHK nội tiếp đường tròn. b) AHM đồng dạng với AMK. c) 2AH.AK = BI.AB. 2. Giải phương trình 2x^2 + (m-6)x + 4 = 0 (với m là tham số). a) Tìm nghiệm của phương trình khi m = 1. b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm thỏa điều kiện. 3. Chứng minh rằng: 1/(a+15) + 1/(b+15) ≥ 4. Nếu bạn quan tâm và muốn đạt kết quả cao trong kỳ thi tuyển sinh, hãy tham gia luyện đề và ôn tập theo hướng dẫn của Sytu để sẵn sàng đối mặt với bài thi Toán sở GD&ĐT Quảng Bình.
Đề tuyển sinh môn Toán (không chuyên) năm 2021 2022 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2021 2022 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2021-2022 trường PTNK TP HCM Đề tuyển sinh môn Toán (không chuyên) năm 2021-2022 trường PTNK TP HCM Ở đây, Sytu muốn đem đến cho các thầy cô giáo và các em học sinh lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán (không chuyên) năm học 2021 - 2022 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Ví dụ về một số câu hỏi trong đề tuyển sinh: Gọi (P), (d) lần lượt là đồ thị của hàm số y = x^2 và y = 2x + m. Tìm m sao cho (P) cắt (d) tại hai điểm phân biệt A(x1;y1); B(x2;y2). Công ty viễn thông X có hai gói cước gọi điện hàng tháng được tính như sau. Bác An chọn gói cước II vì so với gói cước I, bác An sẽ tiết kiệm được 95.000 đồng. Hỏi một tháng trung bình bác An gọi bao nhiêu phút? Tam giác ABC có AB = 3cm, AC = 4cm và BC = 5cm. Vẽ phân giác BD của góc ABC (D thuộc cạnh AC). Tính độ dài BD. Đề tuyển sinh môn Toán không chuyên năm 2021-2022 trường PTNK TP HCM dành cho các em học sinh muốn thử sức và khẳng định năng lực của mình. Hy vọng rằng thông tin này sẽ hữu ích cho bạn trong quá trình ôn tập và chuẩn bị cho kỳ thi sắp tới. Chúc các em thành công!