Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội

Nội dung Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội Đề thi thử vào 10 chuyên 2023 lần 2 Toán chung trường THPT chuyên ĐHSP Hà Nội SYTU xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên năm 2023 lần 2 môn Toán chung trường THPT chuyên Đại học Sư phạm Hà Nội. Đề thi bao gồm đề thi, đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Câu 1: Một hội trường có 374 ghế, được xếp thành nhiều dãy, số ghế ở mỗi dãy bằng nhau và không vượt quá 30. Hãy tìm số dãy ghế của hội trường biết rằng: nếu kê mỗi dãy thêm 2 ghế và bổ sung thêm 1 dãy ghế (số ghế ở mỗi dãy vẫn bằng nhau) thì tổng số ghế là 432. Câu 2: Tìm tất cả các giá trị của m để đồ thị hàm số y = (m − 1)x + 2m + 3 cắt hai trục tọa độ Ox, Oy tương ứng tại hai điểm A, B phân biệt sao cho tam giác OAB có diện tích bằng 4. Câu 3: Cho đường tròn (O) có đường kính AB và M là một điểm nằm trên (O) (M khác A và B). Trong nửa mặt phẳng chứa M, có bờ là đường thẳng AB vẽ các tia Ax, By vuông góc với AB. Tiếp tuyến tại M của (O) cắt các tia Ax, By lần lượt tại C, D. Chứng minh rằng đường thẳng AB là tiếp tuyến của đường tròn đường kính CD. Vẽ đường tròn (I) qua M, tiếp xúc với Ax tại C. Tia OC cắt đường tròn (I) tại điểm thứ hai J. Chứng minh rằng J là trung điểm của OC. Gọi E là trung điểm của OA. Chứng minh rằng đường thẳng qua E và vuông góc với BC cắt OM tại một điểm thuộc đường tròn (I). Mọi thông tin chi tiết và lời giải đều được cung cấp trong đề thi. Chúc quý thầy cô và các em học sinh làm bài tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2019 - 2020 phòng GDĐT Chí Linh - Hải Dương
Tháng 5 năm 2019, phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 dành cho học sinh lớp 9, kỳ thi nhằm tạo điều kiện để các em được thử sức mình, rút ra được những kinh nghiệm cần thiết và xác định được cách thức ôn tập hợp lý trong quãng thời gian còn lại. Đề thi thử Toán vào lớp 10 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn bám sát cấu trúc đề thi môn Toán tuyển sinh vào lớp 10 THPT sở GD&ĐT tỉnh Hải Dương những năm gần đây, đề gồm 1 trang với 5 bài toán tự luận, học sinh có 90 phút để làm bài thi. [ads] Trích dẫn đề thi thử Toán vào lớp 10 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương : + Một phòng họp dự định có 120 người dự họp, nhưng khi họp có 160 người tham dự nên phải kê thêm 2 dãy ghế và mỗi dãy phải kê thêm một ghế nữa thì vừa đủ. Tính số dãy ghế dự định lúc đầu. Biết rằng số dãy ghế lúc đầu trong phòng nhiều hơn 20 dãy ghế và số ghế trên mỗi dãy ghế là bằng nhau. + Cho phương trình: x^2 + 3x + m – 1 = 0 (x là ẩn số). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: x1(x1^4 – 1) + x2(32×2^4 – 1) = 3. + Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O, gọi AD là đường kính của đường tròn (O). Tiếp tuyến tại D của đường tròn (O) cắt đường thẳng BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E và F. 1) Chứng minh: MD^2 = MC.MB. 2) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO, đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P. 3) Chứng minh O là trung điểm của EF.
Đề thi thử Toán vào lớp 10 năm 2019 - 2020 trường Lương Ngọc Quyến - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 9 đề thi thử Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 trường THPT Lương Ngọc Quyến – Thái Nguyên, kỳ thi nhằm giúp các em học sinh nắm được dạng đề cũng như độ khó tương đối, để các em biết được các dạng toán cần ôn tập, cũng như có kế hoạch ôn tập phù hợp cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 sắp tới. Trích dẫn đề thi thử Toán vào lớp 10 năm 2019 – 2020 trường Lương Ngọc Quyến – Thái Nguyên : + Cách tính giá cước của hãng Taxi X cho bởi bảng sau đây: BẢNG GIÁ CƯỚC TAXI (đã bao gồm 10% VAT). Giá mở cửa: 10 000 đ/0,6km. Tiếp theo đến km thứ 25: 13 000 đ/km. Từ km thứ 26 trở đi: 11 000 đ/km. Bác An đi xe của hãng taxi này hết 382 200 đ. Hỏi xe taxi chở Bác An đã đi quãng đường dài bao nhiêu km (biết rằng không có thời gian chờ)? [ads] + Cho đường tròn (O) có bán kính là x (cm) và chu vi là y (cm). Lập công thức biểu thị y theo x và cho biết y có phải là hàm số bậc nhất của x không? Vì sao? + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn tâm O và AB < AC. Vẽ đường kính AD của đường tròn (O). Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC). a) Chứng minh bốn điểm A, B, H, E cùng nằm trên một đường tròn. b) Gọi M là trung điểm của BC. Chứng minh ME = MF.
Đề thi thử Toán tuyển sinh lớp 10 năm 2018 - 2019 trường Lương Thế Vinh - Hà Nội
THCS. giới thiệu đến các em học sinh lớp 9 đề thi thử Toán tuyển sinh lớp 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội, đề thi được biên soạn theo hình thức và cấu trúc tương tự với đề Toán tuyển sinh vào lớp 10 của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề thi thử Toán tuyển sinh lớp 10 năm 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Một ca nô đi xuôi dòng từ A đến B cách nhau 54 km, cùng lúc đó một khúc gỗ trôi tự do theo dòng nước từ A. Khi ca nô đến B, nó dừng lại ở đó 2 giờ và quay trở lại về A. Trên đường về, ca nô gặp khúc gỗ tại vị trí cách A 19 km. Tính vận tốc thực của ca nô biết vận tốc của dòng nước là 4km/h. [ads] + Cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx + 2m + 3. a) Tìm m để (d) và (P) cắt nhau tại điểm phân biệt A và B nằm khắc phía của Oy. b) Với các giá trị của m ở câu a, lần lượt kẻ AH, BK vuông góc với Ox tại H và K. Gọi P là giao điểm của (d) và Oy. Tìm m để tam giác PHK vuông tại P. + Cho đường tròn (O;R) đường kính AB. Dây CD vuông góc với AB tại I cố định nằm giữa A và O. Lấy M bất kì trên cung nhỏ BC (M không trùng với B, C). AM cắt CI tại điểm K. a) Chứng minh tứ giác BMKI nội tiếp. b) Chứng minh AK.AM = AI.AB = AC^2. c) Nếu tam giác BIC quay quanh quạnh BI một vòng ta sẽ được một hình nón đỉnh B. Hãy tính thể tích hình nón này khi ABC = 30°. d) Tìm vị trí của M trên cung nhỏ BC để chu vi tứ giác ABMC lớn nhất.
Đề thi thử Toán tuyển sinh lớp 10 đợt 2 năm 2019 trường Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối lớp 9 nội dung đề thi thử Toán tuyển sinh vào lớp 10 đợt 2 năm 2019 trường THPT Thăng Long – Hà Nội, kỳ thi được diễn ra vào Chủ Nhật ngày 21 tháng 04 năm 2019, đề thi gồm 01 trang với 05 bài toán dạng tự luận, học sinh làm bài trong 120 phút (không kể thời giam giáo viên coi thi phát đề). Trích dẫn đề thi thử Toán tuyển sinh lớp 10 đợt 2 năm 2019 trường Thăng Long – Hà Nội : + Hai người thợ làm chung một công việc với năng suất đã định và dự kiến sẽ xong trong 10 ngày. Họ làm chung với nhau được 8 ngày thì người thứ nhất được điều động đi làm công việc khác, người thứ hai tiếp tục làm đến khi hoàn thành công việc. Từ khi bắt đầu làm công việc một mình, do cải tiến kỹ thuật nên năng suất tăng gấp đôi vì vậy người thứ hai đã làm xong phần việc còn lại trong 3,5 ngày. Hỏi nếu mỗi người làm một mình thì sau bao nhiêu ngày sẽ hoàn thành công việc với năng suất đã định ban đầu. [ads] + Cho biểu thức A và B với x > 0. 1) Tính giá trị của biểu thức B khi x = 9. 2) Đặt P = A.B, rút gọn biểu thức P và so sánh P với 1. 3) Tìm x thuộc R để P có giá trị là số nguyên. + Cho điểm A nằm ngoài đường tròn (O;R). Vẽ các tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và BC, điểm M thuộc dây cung BC, đường thẳng AM cắt đường tròn (O) tại D và E (D nằm giữa A và M), điểm N là trung điểm của dây cung DE. 1) Chứng minh năm điểm A, B, C, O và N cùng thuộc một đường tròn. 2) Chứng minh BOD =2.ANC và tam giác AMH đồng dạng với tam giác AON. 3) Chứng minh AB^2 = AD.AE và tứ giác DHOE là tứ giác nội tiếp. 4) Khi M di chuyển trên dây cung BC, xác định vị trí của điểm M để tổng 1/√AD + 1/√AE lớn nhất.