Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Cần Thơ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Cần Thơ; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cần Thơ : + Trong mặt phẳng Oxy, cho parabol (P): y = 1/2.x2 và đường thẳng (d): y = (m + 2)x – m + 2. Tìm tất cả giá trị của tham số m sao cho đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) cùng nằm bên phải trục tung. + Hưởng ứng phong trào “Xanh hóa trường học”, lớp 9A và lớp 9B được nhà trường giao chỉ tiêu trồng 80 cây xanh xung quanh sân vườn của trường. Nếu lớp 9A trồng trong 2 giờ và lớp 9B trồng trong 1 giờ thì được 25 cây. Nếu lớp 9A trồng trong 1 giờ và lớp 9B trồng trong 2 giờ thì được 23 cây. Hỏi nếu cả hai lớp cùng trồng với nhau thì sau bao lâu hoàn thành chỉ tiêu được giao? Biết rằng, mỗi giờ số cây trồng được của mỗi lớp là không đổi. + Cho tam giác ABC nhọn (AB < AC). Gọi M và N lần lượt là trung điểm của AB và AC. Dựng bên ngoài tam giác ABC các tam giác đều ANI và BMK. Gọi điểm D là hình chiếu vuông góc của điểm A lên cạnh BC, điểm E là trung điểm của đoạn thẳng IK. a) Chứng minh tứ giác AKBD nội tiếp. b) Chứng minh điểm E là tâm đường tròn ngoại tiếp tam giác IKD. c) Tính số đo của NEM.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thừa Thiên Huế
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm có 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Để xây dựng thành phố Huế ngày càng đẹp hơn và khuyến khích người dân rèn luyện sức khỏe. Ủy ban nhân dân tỉnh Thừa Thiên Huế đã cho xây dựng tuyến đường đi bộ ven bờ Bắc sông Hương, từ cầu Trường Tiền đến cầu Dã Viên có chiều dài 2km. Một người đi bộ trên tuyến đường này, khởi hành từ cầu Trường Tiền đến cầu Dã Viên rồi quay về lại cầu Trường Tiền hết tất cả 17/18 giờ. Tính vận tốc của người đó lúc về, biết rằng vận tốc lúc đi lớn hơn vận tốc lúc về là 0,5 km/h. [ads] + Một chiếc cốc thủy tính có dạng hình trụ, chiều cao bằng 10cm và chứa một lượng nước có thể tích bằng một nửa thể tích của chiếc cốc. Một chiếc có thủy tinh khác có dạng hình nón (không chứa gì cả) và có bán kính đáy bằng bán kính đáy chiếc cốc hình trụ đã cho (hình vẽ bên). Biết rằng khi đổ hết lượng nước trong chiếc cốc hình trụ vào chiếc cốc hình nón thì chiếc cốc hình nón đầy nước và không có nước tràn ra ngoài. Tính chiều cao của chiếc cốc có dạng hình nón (bỏ qua bề dày của thành cốc và đáy cốc). + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi M là một điểm bất kỳ trên cung nhỏ AC sao cho BCM nhọn (M không trùng A và C). Gọi E và F lần lượt là chân các đường vuông góc kẻ từ M đến BC và AC. Gọi P là trung điểm của AB, Q là trung điểm của FE. Chứng minh rằng: a) Tứ giác MFEC nội tiếp. b) Tam giác FEM và tam giác ABM đồng dạng. c) MA.MQ = MP.MF và góc PQM = 90 độ.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hải Phòng
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hải Phòng gồm có 02 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hải Phòng : + Một nhà máy theo kế hoạch phải sản xuất 2100 thùng nước sát khuẩn trong một thời gian quy định (số thùng nước sát khuẩn nhà máy phải sản xuất trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ công việc trong giai đoạn tăng cường phòng chống đại dịch COVID-19, mỗi ngày nhà máy đã sản xuất nhiều hơn dự định 35 thùng nước sát khuẩn. Do đó, nhà máy đã hoàn thành công việc trước thời hạn 3 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy phải sản xuất bao nhiêu thùng nước sát khuẩn? [ads] + Qua điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC của đường tròn ( B và C là các tiếp điểm). Gọi E là trung điểm của đoạn thẳng AC, F là giao điểm thứ hai của đường thẳng EB với đường tròn (O), K là giao điểm thứ hai của đường thẳng AF với đường tròn (O). Chứng minh: a) Tứ giác ABOC là tứ giác nội tiếp và tam giác ABF đồng dạng với tam giác AKB. b) BF.CK = CF.BK. c) Tam giác FCE đồng dạng với tam giác CBE và EA là tiếp tuyến của đường tròn ngoại tiếp tam giác ABF. + Cho hai biểu thức: A và B (với x > 0). a) Rút gọn biểu thức A và biểu thức B. b) Tìm các giá trị của x để giá trị của biểu thức A bằng ba lần giá trị của biểu thức B.
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2020 - 2021 sở GDĐT Hải Phòng
Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hải Phòng gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hải Phòng : + Cho tam giác ABC vuông tại A (AB < AC), M là trung điểm cạnh BC. P là một điểm di động trên đoạn AM (P khác A và M). Đường tròn đi qua P, tiếp xúc với đường thẳng AB tại A, cắt đường thẳng BP tại K (K khác P). Đường tròn đi qua P, tiếp xúc với đường thẳng AC tại A, cắt đường thẳng CP tại L (L khác P). a) Chứng minh BP.BK + CP.CL = BC^2. b) Chứng minh đường tròn ngoại tiếp tam giác PKC luôn đi qua hai điểm cố định. c) Gọi J là tâm của đường tròn ngoại tiếp tam giác PKC và E là giao điểm thứ hai của đường tròn này với đường thẳng AC. Gọi I là tâm của đường tròn ngoại tiếp tam giác PLB và F là giao điểm thứ hai của đường tròn này với đường thẳng AB. Chứng minh EF // IJ. [ads] + Giả sử rằng A là tập hợp con của tập hợp {1; 2; 3; …; 1023} sao cho A không chứa hai số nào mà số này gấp đôi số kia. Hỏi A có thể có nhiều nhất bao nhiêu phần tử? + Cho phương trình ẩn x là x^2 – px + q = 0 (với p; q là các số nguyên tố). Tìm tất cả các giá trị của p và q biết phương trình trên có nghiệm là các số nguyên dương.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Đà Nẵng
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đà Nẵng gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đà Nẵng : + Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp từ A đến B hết 16 phút và đi từ B về A hết 14 phút. Biết vận tốc lúc lên dốc là 10 km/h, vận tốc lúc xuống dốc là 15 km/h (vận tốc lên dốc và xuống dốc lúc đi và về như nhau). Tính quãng đường AB. + Cho tam giác ABC nội tiếp trong đường tròn tâm O đường kính AB. Trên cung nhỏ BC của đường tròn (O) lấy điểm D (không trùng với B và C). Gọi H là chân đường vuông góc kẻ từ C đến AB (H thuộc AB) và E là giao điểm của CH với AD. a) Chứng minh rằng tứ giác BDEH là tứ giác nội tiếp. b) Chứng minh rằng AB^2 = AE.AD = BH.BA. c) Đường thẳng qua E song song với AB, cắt BC tại F. Chứng minh rằng CDF = 90 độ và đường tròn ngoại tiếp tam giác OBD đi qua trung điểm của đoạn CF. [ads] + Cho hàm số y = 1/2.x2. a) Vẽ đồ thị (P) của hàm số đã cho. b) Đường thẳng y = 8 cắt đồ thị (P) tại hai điểm phân biệt A và B, trong đó điểm B có hoành độ dương. Gọi H là chân đường cao hạ từ A của tam giác OAB, với O là gốc toạ độ. Tính diện tích tam giác AHB (đơn vị đo trên các trục toạ độ là xentimet).