Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 8 - Nguyễn Chín Em

Trong giai đoạn học sinh lớp 8 buộc phải nghỉ học kéo dài do diễn biến phức tạp của dịch bệnh Covid-19, thì việc tự học tập tại nhà là điều rất cần thiết, để đảm bảo mạch kiến thức không bị gián đoạn. Để hỗ trợ các em trong quá trình tự học môn Toán lớp 8 tại nhà, THCS. chia sẻ đến các em tài liệu tự học Toán 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm có 483 trang, bao gồm đầy đủ kiến thức, phân dạng toán và hướng dẫn giải bài tập Đại số 8 và Hình học 8. Khái quát nội dung tài liệu tự học Toán 8 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC. 1 Nhân đa thức. 2 Các hằng đẳng thức đáng nhớ. 3 Phân tích đa thức thành nhân tử. 4 Chia đa thức. CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ. 1 Tính chất cơ bản của phân thức, rút gọn phân thức. 2 Các phép tính về phân thức. 3 Một số phương pháp phân tích đa thức thành nhân tử. + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp hệ số bất định. + Phương pháp xét giá trị riêng. 4 Tính chia hết của số nguyên. + Chứng minh quan hệ chia hết. + Tìm số dư. + Tìm điều kiện để chia hết. 5 Tính chia hết đối với đa thức. + Tìm dư của phép chia mà không thực hiện phép chia. + Sơ đồ Hoóc-ne. + Chứng minh một đa thức chia hết cho một đa thức khác. CHƯƠNG 3 . PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Khái niệm về phương trình. Phương trình bậc nhất. 2 Phương trình tích. 3 Phương trình chứa ẩn ở mẫu thức. 4 Giải bài toán bằng cách lập phương trình. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Liên hệ giữa thứ tự và phép cộng, phép nhân. 2 Bất phương trình bậc nhất một ẩn. 3 Phương trình chứa ẩn trong dấu giá trị tuyệt đối. 4 Bất phương trình chứa ẩn trong dấu trị tuyệt đối. 5 Bất phương trình tích. Bất phương trình thương. 6 Chuyên đề chứng minh bất đẳng thức180 + Các tính chất của bất đẳng thức. + Các hằng bất đẳng thức. + Các phương pháp chứng minh bất đẳng thức. + Bất đẳng thức với số tự nhiên. + Vài điểm chú ý khi chứng minh bất đẳng thức. + Áp dụng chứng minh bất đẳng thức vào giải phương trình. 7 Tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa một biến. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có quan hệ ràng buộc giữa các biến. + Các chú ý khi tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Bài toán cực trị với số tự nhiên. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . TỨ GIÁC. 1 Tứ giác. 2 Hình thang. 3 Dựng hình bằng thước và compa. 4 Đối xứng trục. 5 Hình bình hành. 6 Đối xứng tâm. 7 Hình chữ nhật. 8 Hình thoi. 9 Hình vuông. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC. 1 Đa giác. 2 Diện tích của đa giác. CHƯƠNG 3 . CHUYÊN ĐỀ. 1 Tìm tập hợp điểm. + Hai tập hợp bằng nhau. + Các tập hợp điểm đã học. + Thứ tự nghiên cứu và trình bày lời giải bài toán tìm tập hợp điểm. + Phân chia các trường hợp trong bài toán tìm tập hợp điểm. 2 Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng. CHƯƠNG 4 . TAM GIÁC ĐỒNG DẠNG. 1 Định lý Ta-lét. 2 Định lý Ta-lét đảo. 3 Tính chất đường phân giác của tam giác. 4 Các trường hợp đồng dạng của tam giác. + Dạng 1. Trường hợp cạnh – cạnh – cạnh. + Dạng 2. Trường hợp cạnh – góc – cạnh. + Dạng 3. Trường hợp góc – góc. + Dạng 4. Phối hợp các trường hợp cạnh – góc – cạnh và góc – góc. + Dạng 5. Dựng hình. 5 Các trường hợp đồng dạng của tam giác vuông. + Hai tam giác vuông đồng dạng. + Tỉ số các đường cao, tỉ số diện tích của hai tam giác đồng dạng. + Ứng dụng thực tế của tam giác đồng dạng. CHƯƠNG 5 . HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU. 1 Hình hộp chữ nhật. Dạng 1. Hình hộp chữ nhật. Dạng 2. Diện tích. Dạng 3. Thể tích. Dạng 4. Các dạng khác. CHƯƠNG 6 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONGKHÔNG GIAN. QUAN HỆ SONG SONG. 1 Hình lăng trụ đứng. 2 Hình chóp đều. Hình chóp cụt đều. 3 Toán cực trị hình học. + Bài toán cực trị. + Các bất đẳng thức thường dùng để giải toán cực trị. + Các chú ý khi giải toán cực trị.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích hình thang
Nội dung Chuyên đề diện tích hình thang Bản PDF - Nội dung bài viết Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang là tài liệu học tập bao gồm 08 trang, được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tài liệu này tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình thang. Đầu tiên, tài liệu giải thích rằng diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao, cũng như diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. Trong phần bài tập và các dạng toán, tài liệu cung cấp các bài tập từ cơ bản đến nâng cao về diện tích hình thang. Các dạng bài minh họa bao gồm: tính diện tích hình thang, tính diện tích hình bình hành, tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích, tìm diện tích lớn nhất (nhỏ nhất) của một hình. Để giải các dạng toán này, học sinh sẽ được hướng dẫn cách sử dụng công thức tính diện tích, cũng như áp dụng các phương pháp giải quan trọng như sử dụng tính chất đường vuông góc ngắn hcm đường xiên. Ngoài ra, tài liệu còn cung cấp phiếu bài tự luyện để học sinh có thể tự rèn luyện và kiểm tra kiến thức của mình trong chuyên đề diện tích hình thang.
Chuyên đề diện tích tam giác
Nội dung Chuyên đề diện tích tam giác Bản PDF - Nội dung bài viết Chuyên đề diện tích tam giácTóm tắt lý thuyếtBài tập và các dạng toánPhiếu bài tự luyện Chuyên đề diện tích tam giác Tài liệu này bao gồm 11 trang, cung cấp kiến thức về diện tích tam giác cần đạt, phân loại và hướng dẫn giải các dạng bài tập liên quan đến chuyên đề này. Nội dung tài liệu được tóm tắt từ lý thuyết về trọng tâm tam giác, cách tính diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết Diện tích tam giác có thể tính bằng nửa tích của một cạnh nhân với chiều cao tương ứng. Tài liệu cũng chú ý đến tỉ số diện tích của hai tam giác khi có một cạnh hoặc một đường cao bằng nhau. Bài tập và các dạng toán Tài liệu cung cấp các dạng bài tập minh họa như: Tính toán, chứng minh về diện tích tam giác; Sử dụng công thức tính diện tích để tìm độ dài đoạn thẳng; Chứng minh hệ thức về diện tích; Tìm vị trí điểm thỏa mãn đẳng thức về diện tích; Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải các dạng toán được hướng dẫn chi tiết, từ việc sử dụng công thức tính diện tích đến phát hiện mối quan hệ giữa các yếu tố trong tam giác. Điều này giúp học sinh nắm vững kiến thức và áp dụng linh hoạt trong giải các bài tập. Phiếu bài tự luyện Tài liệu cuối cùng cung cấp phiếu bài tập tự luyện để học sinh có thể kiểm tra kiến thức và rèn luyện kỹ năng giải bài tập liên quan đến diện tích tam giác. Đây là cơ hội cho học sinh tự kiểm tra và nâng cao khả năng giải bài toán trong chuyên đề này.
Chuyên đề diện tích hình chữ nhật
Nội dung Chuyên đề diện tích hình chữ nhật Bản PDF - Nội dung bài viết Chuyên đề diện tích hình chữ nhật Chuyên đề diện tích hình chữ nhật Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình chữ nhật. Nội dung tài liệu được tuyển chọn từ cơ bản đến nâng cao, giúp học sinh hiểu rõ về chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. Tóm tắt lý thuyết: 1. Khái niệm diện tích đa giác: Diện tích đa giác là số đo phần mặt phẳng giới hạn bởi một đa giác. Diện tích đa giác có các tính chất: hai tam giác bằng nhau có diện tích bằng nhau, chia đa giác thành các đa giác không có điểm chung thì diện tích bằng tổng diện tích các đa giác đó, và đơn vị diện tích của hình vuông tương ứng với đơn vị đo được chọn. 2. Công thức tính diện tích hình cơ bản: - Diện tích hình chữ nhật: bằng tích hai kích thước của nó. - Diện tích hình vuông: bằng bình phương cạnh. - Diện tích tam giác vuông: bằng nửa tích hai cạnh góc vuông. - Diện tích tam giác thường: bằng nửa tích một cạnh và chiều cao hạ xuống cạnh đó. II. Bài tập và các dạng toán: A. Các dạng bài minh họa: - Tính diện tích đa giác. - Diện tích hình chữ nhật. - Diện tích hình vuông. - Diện tích tam giác vuông. - Tổng hợp các dạng trên. B. Phiếu bài tự luyện: - Diện tích hình chữ nhật. - Tính độ dài các cạnh của hình chữ nhật. - Diện tích hình vuông và tam giác vuông. - Bài tập tổng hợp. Tài liệu này cung cấp đầy đủ đáp án và lời giải chi tiết, giúp học sinh hỗ trợ trong quá trình học tập, hiểu rõ về diện tích hình chữ nhật và áp dụng vào các dạng bài tập phong phú.
Chuyên đề đa giác, đa giác đều
Nội dung Chuyên đề đa giác, đa giác đều Bản PDF - Nội dung bài viết Chuyên đề đa giác, đa giác đềuTóm tắt lý thuyếtBài tập và các dạng toánA. Các dạng bài minh họaB. Phiếu bài tự luyện Chuyên đề đa giác, đa giác đều Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến đa giác và đa giác đều. Ngoài ra, tài liệu này cũng tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề này, với đáp án và lời giải chi tiết. Đây là một công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8, đặc biệt là chương 2 với nội dung về đa giác và diện tích đa giác. Tóm tắt lý thuyết 1. Đa giác: Đa giác A1A2...An là hình gồm n đoạn thẳng A1A2, A2A3,... AnA1, trong đó không có hai đoạn thẳng nào có một điểm chung và không nằm trên cùng một đường thẳng. 2. Đa giác lồi: Đa giác lồi luôn nằm trong một nửa mặt phẳng có bờ là một đường thẳng chứa bất kỳ cạnh nào của đa giác. 3. Các khái niệm khác: - Một đa giác có n đỉnh được gọi là n-giác. - Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. - Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. Bài tập và các dạng toán A. Các dạng bài minh họa - Dạng 1: Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác. - Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Sử dụng công thức tính tổng góc trong đa giác. - Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. - Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa và công thức tính góc của đa giác đều. B. Phiếu bài tự luyện Đề cung cấp phiếu bài tập tự luyện để học sinh có thể tự ôn tập và kiểm tra kiến thức của mình trong chuyên đề này.