Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 8 - Nguyễn Chín Em

Trong giai đoạn học sinh lớp 8 buộc phải nghỉ học kéo dài do diễn biến phức tạp của dịch bệnh Covid-19, thì việc tự học tập tại nhà là điều rất cần thiết, để đảm bảo mạch kiến thức không bị gián đoạn. Để hỗ trợ các em trong quá trình tự học môn Toán lớp 8 tại nhà, THCS. chia sẻ đến các em tài liệu tự học Toán 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm có 483 trang, bao gồm đầy đủ kiến thức, phân dạng toán và hướng dẫn giải bài tập Đại số 8 và Hình học 8. Khái quát nội dung tài liệu tự học Toán 8 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC. 1 Nhân đa thức. 2 Các hằng đẳng thức đáng nhớ. 3 Phân tích đa thức thành nhân tử. 4 Chia đa thức. CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ. 1 Tính chất cơ bản của phân thức, rút gọn phân thức. 2 Các phép tính về phân thức. 3 Một số phương pháp phân tích đa thức thành nhân tử. + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp hệ số bất định. + Phương pháp xét giá trị riêng. 4 Tính chia hết của số nguyên. + Chứng minh quan hệ chia hết. + Tìm số dư. + Tìm điều kiện để chia hết. 5 Tính chia hết đối với đa thức. + Tìm dư của phép chia mà không thực hiện phép chia. + Sơ đồ Hoóc-ne. + Chứng minh một đa thức chia hết cho một đa thức khác. CHƯƠNG 3 . PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Khái niệm về phương trình. Phương trình bậc nhất. 2 Phương trình tích. 3 Phương trình chứa ẩn ở mẫu thức. 4 Giải bài toán bằng cách lập phương trình. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Liên hệ giữa thứ tự và phép cộng, phép nhân. 2 Bất phương trình bậc nhất một ẩn. 3 Phương trình chứa ẩn trong dấu giá trị tuyệt đối. 4 Bất phương trình chứa ẩn trong dấu trị tuyệt đối. 5 Bất phương trình tích. Bất phương trình thương. 6 Chuyên đề chứng minh bất đẳng thức180 + Các tính chất của bất đẳng thức. + Các hằng bất đẳng thức. + Các phương pháp chứng minh bất đẳng thức. + Bất đẳng thức với số tự nhiên. + Vài điểm chú ý khi chứng minh bất đẳng thức. + Áp dụng chứng minh bất đẳng thức vào giải phương trình. 7 Tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa một biến. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có quan hệ ràng buộc giữa các biến. + Các chú ý khi tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Bài toán cực trị với số tự nhiên. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . TỨ GIÁC. 1 Tứ giác. 2 Hình thang. 3 Dựng hình bằng thước và compa. 4 Đối xứng trục. 5 Hình bình hành. 6 Đối xứng tâm. 7 Hình chữ nhật. 8 Hình thoi. 9 Hình vuông. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC. 1 Đa giác. 2 Diện tích của đa giác. CHƯƠNG 3 . CHUYÊN ĐỀ. 1 Tìm tập hợp điểm. + Hai tập hợp bằng nhau. + Các tập hợp điểm đã học. + Thứ tự nghiên cứu và trình bày lời giải bài toán tìm tập hợp điểm. + Phân chia các trường hợp trong bài toán tìm tập hợp điểm. 2 Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng. CHƯƠNG 4 . TAM GIÁC ĐỒNG DẠNG. 1 Định lý Ta-lét. 2 Định lý Ta-lét đảo. 3 Tính chất đường phân giác của tam giác. 4 Các trường hợp đồng dạng của tam giác. + Dạng 1. Trường hợp cạnh – cạnh – cạnh. + Dạng 2. Trường hợp cạnh – góc – cạnh. + Dạng 3. Trường hợp góc – góc. + Dạng 4. Phối hợp các trường hợp cạnh – góc – cạnh và góc – góc. + Dạng 5. Dựng hình. 5 Các trường hợp đồng dạng của tam giác vuông. + Hai tam giác vuông đồng dạng. + Tỉ số các đường cao, tỉ số diện tích của hai tam giác đồng dạng. + Ứng dụng thực tế của tam giác đồng dạng. CHƯƠNG 5 . HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU. 1 Hình hộp chữ nhật. Dạng 1. Hình hộp chữ nhật. Dạng 2. Diện tích. Dạng 3. Thể tích. Dạng 4. Các dạng khác. CHƯƠNG 6 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONGKHÔNG GIAN. QUAN HỆ SONG SONG. 1 Hình lăng trụ đứng. 2 Hình chóp đều. Hình chóp cụt đều. 3 Toán cực trị hình học. + Bài toán cực trị. + Các bất đẳng thức thường dùng để giải toán cực trị. + Các chú ý khi giải toán cực trị.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết, các dạng toán và bài tập phân thức đại số
Tài liệu gồm 42 trang, tóm tắt lý thuyết, các dạng toán và bài tập phân thức đại số, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 2. Bài 1. Phân thức đại số. + Dạng 1. Chứng minh hai phân thức bằng nhau. + Dạng 2. Tìm giá trị nhỏ nhất (GTNN), giá trị lớn nhất (GTLN) của phân thức. Bài 2. Tính chất cơ bản của phân thức đại số. Bài 3. Rút gọn phân thức. + Dạng 1. Điền đa thức vào chỗ trống để có đẳng thức. + Dạng 2. Rút gọn phân thức. + Dạng 3. Chứng minh đẳng thức. + Dạng 4. Tính giá trị của biểu thức. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 6. Chứng minh biểu thức không phụ thuộc vào biến. + Dạng 7. Rút gọn biểu thức có điều kiện cho trước. Bài 4. Quy đồng mẫu thức của nhiều phân thức. + Dạng 1. Tìm mẫu thức chung của nhiều phân thức. + Dạng 2. Quy đồng mẫu thức. Bài 5. Phép cộng các phân thức đại số. Bài 6. Phép trừ các phân thức đại số. + Dạng 3. Rút gọn và tính giá trị của biểu thức. + Dạng 4. Chứng minh biểu thức không phụ thuộc vào biến. + Dạng 5. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 6. Áp dụng phân thức đại số vào bài toán chuyển động. + Dạng 7. Thực hiện phép tính để rút gọn phân thức. Bài 7. Phép nhân các phân thức đại số. Bài 8. Phép chia các phân thức đại số. Bài 9. Biến đổi các biểu thức hữu tỉ giá trị của phân thức. + Dạng 1. Rút gọn biểu thức. + Dạng 2. Điều kiện của x để giá trị phân thức xác định. + Dạng 3. Chứng minh biểu thức không phụ thuộc vào biến. Ôn tập chương III. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức
Tài liệu gồm 59 trang, tóm tắt lý thuyết, các dạng toán và bài tập phép nhân và phép chia đa thức, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Đại số chương 1. Bài 1. Nhân đơn thức với đa thức. Bài 2. Nhân đa thức với đa thức. + Dạng 1. Làm tính nhân. + Dạng 2. Tính giá trị của biểu thức. + Dạng 3. Rút gọn biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến. + Dạng 6. Giải toán bằng cách đặt ẩn x. + Dạng 7. Chứng minh đẳng thức. + Dạng 8. Áp dụng vào số học. + Dạng 9. Đa thức đồng nhất bằng nhau. Bài 3 – Bài 4 – Bài 5. Những hằng đẳng thức đáng nhớ. + Dạng 1. Áp dụng các hằng đẳng thức đáng nhớ để tính. + Dạng 2. Chứng minh đẳng thức. + Dạng 3. Tính nhanh. + Dạng 4. Rút gọn biểu thức và tính giá trị của biểu thức. + Dạng 5. Điền vào ô trống các hạng từ thích hợp. + Dạng 6. Biểu diễn đa thức dưới dạng bình phương, lập phương của một tổng (một hiệu). + Dạng 7. Một số hằng đẳng thức tổng quát. Bài 6 – Bài 7 – Bài 8 – Bài 9. Phân tích đa thức thành nhân tử. + Dạng 1. Phân tích đa thức thành nhân tử. + Dạng 2. Tính nhanh. + Dạng 3. Tính giá trị của biểu thức. + Dạng 4. Tìm x thỏa mãn đẳng thức cho trước. + Dạng 5. Áp dụng vào số học. + Dạng 6. Tìm các cặp số nguyên (x;y) thỏa mãn đẳng thức cho trước. + Dạng 7. Phương pháp đặt ẩn phụ. + Dạng 8. Phương pháp hệ số bất định. + Dạng 9. Chứng minh đẳng thức. + Dạng 10. Chứng minh bất đẳng thức. Bài 10. Chia đơn thức cho đơn thức. Bài 11. Chia đa thức cho đơn thức. + Dạng 1. Làm tính chia. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. Không làm tính chia, xét xem đa thức a có chia hết cho đơn thức b không? Bài 12. Chia đa thức một biến đã sắp xếp. + Dạng 1. Thực hiện phép chia đa thức. + Dạng 2. Tính nhanh. + Dạng 3. Áp dụng định lí Bézout để phân tích đa thức ra thừa số. + Dạng 4. Tìm số nguyên n để biểu thức a(n) chia hết cho biểu thức b(n). + Dạng 5. Phân tích đa thức thành nhân tử bằng phương pháp xét giá trị riêng. + Dạng 6. Tìm các hệ số để đa thức f(x) chia hết cho g(x). + Dạng 7. Tìm dư trong phép chia đa thức. Ôn tập chương I. A. Bài tập ôn trong SGK. B. Bài tập bổ sung.
Phương pháp phân tích đa thức thành nhân tử
Tài liệu gồm 74 trang, hướng dẫn các phương pháp phân tích đa thức thành nhân tử, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số 8. A. MỘT SỐ PHƯƠNG PHÁP PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. Các phương pháp phân tích cơ bản 1. Phương pháp đặt nhân tử chung. + Tìm nhân tử chung là những đơn thức, đa thức có mặt trong tất cả các hạng tử. + Phân tích mỗi hạng tử thành tích của nhân tử chung và một nhân tử khác. + Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kể cả dấu của chúng). 2. Phương pháp dùng hằng đẳng thức. + Dùng các hằng đẳng thức đáng nhớ để phân tích đa thức thành nhân tử. + Cần chú ý đến việc vận dụng hằng đẳng thức. 3. Phương pháp nhóm nhiều hạng tử và phối hợp các phương pháp. + Kết hợp các hạng tử thích hợp thành từng nhóm. + Áp dụng liên tiếp các phương pháp đặt nhân tử chung hoặc dùng hằng đẳng thức. II. Một số phương pháp nâng cao Chúng ta đã biết các phương pháp cơ bản để phân tích một đa thức thành nhân tử là đặt nhân tử chung, dùng hằng đẳng thức, nhóm các hạng tử và phối hợp các phương pháp đó. Tuy nhiên có những đa thức mặc dù rất đơn giản, nếu chỉ biết dùng ba phương pháp đó thôi thì không thể phân tích thành nhân tử được. Do đó trong chuyên đề này chúng ta sẽ xét thêm một số phương pháp khác để phân tích đa thức thành nhân tử. 1. Phương pháp tách hạng tử. 1.1. Đối với đa thức bậc hai f(x) = ax2 + bx + c có nghiệm. 1.2. Đối với đa thức hai biến dạng f(x;y) = ax2 + bxy + cy2. 1.3. Đối với đa thức bậc từ 3 trở lên. 1.4. Đối với đa thức nhiều biến. 2. Phương pháp thêm và bớt cùng một hạng tử. Với một số đa thức không thể sử dụng các phương pháp như đặt nhân tử chung, sử dụng hằng đẳng thức, nhóm hạng tử cũng như phép tách hạng tử để phân tích thành nhân tử. Khi đó ta có thể sử dụng phép thêm bớt cùng một hạng tử với mục đích làm xuất hiện nhân tử chung hoặc xuất hiện các hằng đẳng thức. 2.1. Thêm và bớt cùng một số các hạng tử làm xuất hiện các hằng đẳng thức. 2.2. Thêm và bớt cùng một số hạng tử làm xuất hiện nhân tử chung. 3. Phương pháp đổi biến. Với một số đa thức có bậc cao hoặc có cấu tạo phức tạp mà khi thự hiện theo các phương pháp như trên gây ra nhiều khó khăn. Khi đó thông qua phép đổi biết ta đưa được về đa thức có bậc thấp hơn goặc đơn giản hơn để thuận tiện cho việc phân tích thành nhân tử. Sau khi phân tích thành nhân tử đối với đa thức mới ta thay trở lại biến cũ để được đa thức với biến cũ. 4. Phương pháp hệ số bất định. 5. Phương pháp xét giá trị riêng. Trong phương pháp này, trước hết ta xác định dạng các nhân tử chứa biến của đa thức, rồi gán cho các biến các giá trị cụ thể để xác định các nhân tử còn lại. B. MỘT SỐ BÀI TẬP TỰ LUYỆN C. HƯỚNG DẪN GIẢI
Các hằng đẳng thức đáng nhớ và ứng dụng
Tài liệu gồm 59 trang, tuyển tập các hằng đẳng thức đáng nhớ và ứng dụng trong giải toán, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 phần Đại số. A. Một số kiến thức cần nhớ 1. Nhắc lại những hằng đẳng thức đáng nhớ. + Bình phương của một tổng. + Bình phương của một hiệu. + Hiệu của hai bình phương. + Lập phương của tổng. + Lập phương của hiệu. + Tổng hai lập phương. + Hiệu hai lập phương: 2. Một số hằng đẳng thức tổng quát. 3. Nhị thức Newton. B. Một số ví dụ minh họa Với các hẳng đẳng thức đáng nhớ cũng như các hẳng đẳng thức mở rộng ta có thể áp dụng khi giải một số dạng bài tập toán như sau: + Áp dụng trực tiếp các hằng đẳng thức để thực hiện tính phép tính, tính giá trị các biểu thức số. + Áp dụng các hằng đẳng thức để thu gọn biểu thức và chứng minh các đẳng thức. + Áp dụng các hằng đẳng thức để giải bài toán tìm giá trị của biến. Xác định hệ số của đa thức. + Bài toán tính giá trị biểu thức với các biến có điều kiện. + Chứng minh bất đẳng thức và bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức đại số. + Áp dụng các hằng đẳng thức để giải một số bài toán số học và tổ hợp. C. Một số bài tập tự luyện D. Hướng dẫn giải