Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 Toán 10 năm 2022 - 2023 trường THPT Kiến Thụy - Hải Phòng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kì 2 môn Toán 10 năm học 2022 – 2023 trường THPT Kiến Thụy, thành phố Hải Phòng; đề thi có đáp án và biểu điểm. Trích dẫn Đề cuối học kì 2 Toán 10 năm 2022 – 2023 trường THPT Kiến Thụy – Hải Phòng : + Xét tính đồng biến, nghịch biến của hàm số 2 fx 4 5 trên các khoảng (−∞;2) và (2;+∞). Khẳng định nào sau đây đúng? A. Hàm số đồng biến trên (−∞;2), nghịch biến trên (2;+∞). B. Hàm số đồng biến trên các khoảng (−∞;2) và (2;+∞). C. Hàm số nghịch biến trên (−∞;2), đồng biến trên (2;+∞). D. Hàm số nghịch biến trên các khoảng (−∞;2) và (2;+∞). + Cho A là tập các số tự nhiên có 4 chữ số khác nhau đôi một. Lấy từ tập A một số, tính xác suất để chọn được một số thỏa mãn: chữ số hàng ngàn lớn hơn hàng trăm, chữ số hàng trăm lớn hơn hàng chục và chữ số hàng chục lớn hơn hàng đơn vị. + Trong mặt phẳng tọa độ, cho tam giác ABC có phương trình các cạnh AB x y 10 AC x y 7 2 0 BC x y 10 19 0. Viết phương trình đường phân giác trong góc A của tam giác ABC.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bình Hưng Hòa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bình Hưng Hòa, thành phố Hồ Chí Minh. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bình Hưng Hòa – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A, B, C. Viết phương trình tham số và phương trình tổng quát đường cao AH của tam giác ABC. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC với A, B, C. Viết phương trình đường tròn ngoại tiếp tam giác ABC. + Giải các bất phương trình sau bằng cách lập bảng xét dấu.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bách Việt - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bách Việt, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bách Việt – TP HCM : + Trong mặt phẳng Oxy cho tam giác ABC có A(8;7), B(-5;3), C(5;-4). a) Viết phương trình tham số và tổng quát của đường thẳng BC. b) Viết phương trình tổng quát đường thẳng đi qua A và vuông góc với BC. c) Viết phương trình đường tròn đường kính AB. d) Tính khoảng cách từ B đến đường thẳng. + Cho đường thẳng và đường tròn. Tìm m để đường thẳng tiếp xúc với đường tròn (C)? + Chứng minh biểu thức sau không phụ thuộc vào biến.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT Bà Điểm - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT Bà Điểm, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT Bà Điểm – TP HCM : + Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(3;2) và đường thẳng (d). a) Viết phương trình tổng quát của đường thẳng (d’) đi qua A và vuông góc với đường thẳng (d). b) Tìm điểm M thuộc (d) và cách A một khoảng bằng 2. + Trong mặt phẳng với hệ tọa độ Oxy, cho ABC có A(-2;0); B(-1;1); C(2;2). a) Viết phương trình đường tròn (C) ngoại tiếp ABC. b) Viết phương trình tiếp tuyến (d) của (C) tại B. + Cho phương trình (m là tham số). Tìm tất cả các giá trị của tham số m để phương trình có 2 nghiệm x1, x2 thỏa.
Đề thi học kì 2 Toán 10 năm 2019 - 2020 trường THPT An Nghĩa - TP HCM
Nhằm giúp các em học sinh lớp 10 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 10 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 10 năm học 2019 – 2020 trường THPT An Nghĩa, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 10 năm 2019 – 2020 trường THPT An Nghĩa – TP HCM : + Trong mặt phẳng Oxy, cho hai điểm M và N. Viết phương trình đường tròn C có đường kính MN. + Trong mặt phẳng Oxy, cho điểm I(1;2) và đường thẳng d. Viết phương trình đường tròn (C) có tâm I và tiếp xúc với đường thẳng d. + Chứng minh rằng (khi các biểu thức có nghĩa).