Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Sóc Trăng

Nội dung Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Sóc Trăng Bản PDF Sytu xin giới thiệu đến các thầy cô và các em học sinh đề tuyển sinh lớp 10 THPT môn Toán năm 2021 - 2022 của sở GD&ĐT Sóc Trăng. Đề thi này bao gồm đáp án và lời giải chi tiết để các em có thể ôn tập hiệu quả.

Trong đề tuyển sinh có một bài toán thú vị: Trong một giai đoạn phòng chống dịch Covid-19, một công ty cần sản xuất 4000 chai dung dịch khử khuẩn trong một thời gian quy định. Mỗi ngày công ty đã sản xuất nhiều hơn dự định 100 chai dung dịch khử khuẩn, và do đó hoàn thành công việc trước thời hạn 2 ngày. Hỏi theo kế hoạch, mỗi ngày công ty cần sản xuất bao nhiêu chai dung dịch khử khuẩn?

Bài toán tiếp theo đề cập đến hình học: Từ điểm S nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến SA, SB với đường tròn (A, B là các tiếp điểm) và đường cát tuyến SCD không đi qua O (C nằm giữa S và D). Gọi K là giao điểm của SO với cung nhỏ AB và H là giao điểm của SO với đoạn thẳng AB. Hãy chứng minh: a) Tứ giác SAOB nội tiếp. b) 2 SA SC SD. c) SCK HCK.

Cuối cùng, bài toán cuối cùng liên quan đến mô hình vòng xoay đường Trần Hưng Đạo và đường Lê Hồng Phong ở Thành phố Sóc Trăng. Mô hình này được làm thành một quả địa cầu có đường kính bằng 5 mét, với bề mặt làm từ tấm hợp kim. Hãy tính diện tích mặt cầu ứng với mô hình đó.

Đề thi này không chỉ giúp các em ôn tập kiến thức mà còn giúp họ phát triển kỹ năng giải quyết vấn đề và tư duy logic. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 cấp THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Điện Biên : + Một ô tô và một xe máy khởi hành cùng một lúc để đi từ A đến B với vận tốc mỗi xe không đổi trên toàn bộ quãng đường AB. Biết quãng đường AB dài 240 km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 20 km/h nên ô tô đến B sớm hơn xe máy 2 giờ. Tính vận tốc mỗi xe. + Trong mặt phẳng tọa độ Oxy, cho Parabol (P): y = x2 và đường thẳng (d): y = −2x + m (với m là tham số). Tìm giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt A(x1;y1) và B(x2;y2) thoả mãn: y1 + y2 + 3x1x2 = 1. + Cho đường tròn (O;R), đường kính AB. Kẻ Ax là tiếp tuyến của đường tròn tâm O. Trên tia Ax lấy điểm C (C khác A), CB cắt đường tròn tại điểm D. Gọi I là giao điểm của OC và AD. Kẻ AH vuông góc với OC tại điểm H, AH cắt BC tại điểm M. a) Chứng minh tứ giác DMHI nội tiếp đường tròn. b) Chứng minh OH.OC = R2 và tam giác OHB đồng dạng với tam giác OBC. c) Chứng minh MD/MB = HD/HB.
Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (không chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Hệ thống cáp treo núi Bà Đen tỉnh Tây Ninh gồm hai tuyến Vân Sơn và Chùa Hang có tổng cộng 191 cabin, mỗi cabin có sức chứa 10 người. Nếu tất cả các cabin của hai tuyến đều chứa đủ số người theo qui định thì số người ở tuyến Vân Sơn nhiều hơn số người ở tuyến Chùa Hang là 350 người. Tính số cabin của mỗi tuyến. + Cho đường tròn (O) và điểm A nằm ngoài (O). Từ A vẽ các tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm). Gọi D là trung điểm của đoạn thẳng AC, BD cắt (O) tại E (khác B) và BC cắt OA tại F. Chứng minh bốn điểm C, D, E, F cùng thuộc một đường tròn. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là trung điểm của HB và HC. Kẻ MK vuông góc với AN tại K, MK cắt AH tại I. Tính AH/AI.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào chiều thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hải Dương : + Một đội công nhân phải trồng 96 cây xanh. Đội dự định chia đều số cây cho mỗi công nhân nhưng khi chuẩn bị trồng thì có 4 công nhân được điều đi làm việc khác nên mỗi công nhân còn lại phải trồng thêm 4 cây. Hỏi lúc đầu đội công nhân có bao nhiêu người? + Cho parabol (P): y = x2 và đường thẳng (d): y = 3x + m. Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 thoả mãn x1 + 2×2 = m + 3. + Cho tam giác ABC có ba góc nhọn và các đường cao AF, BD, CE cắt nhau tại H. 1. Chứng minh rằng: DAH = DEH. 2. Gọi O và M lần lượt là trung điểm của BC và AH. Chứng minh rằng: tứ giác MDOE nội tiếp. 3. Gọi K là giao điểm của AH và DE. Chứng minh rằng: AH2 = 2MK(AF + HF).
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào sáng thứ Sáu ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân làm chung một công việc thì làm xong trong 12 ngày. Khi làm riêng, để hoàn thành công việc trên thì đội thứ nhất cần nhiều thời gian hơn đội thứ hai là 10 ngày. Hỏi nếu làm riêng thì trong bao nhiêu ngày mỗi đội sẽ làm xong công việc trên? + Một dụng cụ gồm hai phần: một phần có dạng hình trụ, phần còn lại có dạng hình nón với các kích thước cho như hình vẽ bên. a) Tính chiều cao của phần dụng cụ có dạng hình nón. b) Tính thể tích dụng cụ đã cho (lấy pi = 3,14). + Cho đường tròn tâm O, đường kính AB. Lấy điểm H nằm giữa O và B (H khác O và H khác B), vẽ dây cung MN của đường tròn (O) vuông góc với AB tại H. Trên đường thẳng MN lấy điểm C nằm ngoài đường tròn (O) sao cho CM > CN. Đoạn thẳng AC cắt đường tròn (O) tại điểm K (K khác A). Hai dây cung MN và BK cắt nhau tại E. a) Chứng minh tứ giác AHEK là tứ giác nội tiếp. b) Chứng minh CN.CM = CK.CA. c) Từ điểm N vẽ đường thẳng vuông góc với đường thẳng AC, đường thẳng này cắt tia MK tại F. Chứng minh tam giác KFN là tam giác cân.