Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán 2018 THPT Quốc gia lần 1 trường THPT Kim Liên - Hà Nội

Đề thi thử Toán 2018 THPT Quốc gia lần 1 trường THPT Kim Liên – Hà Nội gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 05/01/2018, nội dung đề thi bao gồm cả chương trình Toán 11 và Toán 12. Chỉ còn khoảng hơn 5 tháng nữa kỳ thi THPT Quốc gia năm 2018 sẽ chính thức diễn ra, do vậy từ đầu năm 2018 này, các trường THPT trên toàn quốc đã bắt đầu khởi động các kế hoạch thi thử nhằm giúp các em học sinh 12 làm quen với hình thức thi, cấu trúc đề thi và nắm được các dạng toán thường gặp, cũng như các dạng toán phân loại điểm 9, 10 mới có thể xuất hiện trong đề thi chính thức. Trích dẫn đề thi thử Toán 2018 : + Ngân hàng BIDV Việt Nam đang áp dụng hình thức lãi kép với lãi suất: không kỳ hạn là 0,2%/năm, kỳ hạn 3 tháng là 4,8%/năm. Ông A đến ngân hàng BIDV gửi tiết kiệm với số tiền ban đầu là 300 triệu đồng. Nếu gửi không kỳ hạn mà ông A muốn thu về cả vốn và lãi bằng hoặc vượt quá 305 triệu đồng thì ông A phải gửi ít nhất n tháng (n ∈ N*). Hỏi nếu cùng số tiền ban đầu và cùng số tháng đó, ông A gửi tiết kiệm có kỳ hạn 3 tháng thì ông A sẽ nhận được số tiền cả vốn lẫn lãi là bao nhiêu (giả sử rằng trong suốt thời gian đó, lãi suất ngân hàng không thay đổi và nếu chưa đến kỳ hạn mà rút tiền thì số tháng dư so với kỳ hạn sẽ được tính theo lãi suất không kỳ hạn). [ads] + Việt và Nam chơi cờ. Trong một ván cờ, xác suất để Việt thắng Nam là 0,3 và Nam thắng Việt là 0,4. Hai bạn dừng chơi cờ khi có người thắng, người thua. Tính xác suất để 2 bạn dừng chơi sau 2 ván. + Trên bàn có 1 cốc nước hình trụ chứa đầy nước. Có chiều cao bằng 3 lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón đó (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài. Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp thủy tinh).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần thứ hai trường THPT Hai Bà Trưng, tỉnh Thừa Thiên Huế (mã đề 132). Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng – TT Huế : + Cho hàm số ƒ(x) = ax4 + bx3 + cx2 + dx + e với a b c d e là các số thực. Đồ thị của hai hàm số y = f'(x) và y= f”(x) cắt nhau tại các điểm trong đó có hai điểm là M N (tham khảo hình vẽ). Biết diện tích miền gạch chéo bằng 8. Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = f'(x) và y = f”(x). + Trong không gian Oxyz cho hai mặt phẳng (P): 3x – 4z + 8 = 0 và mặt phẳng (Q): 3x – 4z – 12 = 0. Gọi (S) là mặt cầu đi qua gốc tọa độ O và tiếp xúc với cả hai mặt phẳng (P) và (Q). Biết rằng khi (S) thay đổi thì tâm của nó luôn nằm trên một đường tròn (C) có tâm H(a;b;c), bán kính r. Tính T. + Trên tập hợp các số phức, xét phương trình z2 – 2z + m²  = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình đó có hai nghiệm phân biệt z1 và z2 thỏa mãn.
Đề thi thử TN THPT 2022 môn Toán trường chuyên Phan Bội Châu - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT chuyên Phan Bội Châu, thành phố Vinh, tỉnh Nghệ An (mã đề 002). Trích dẫn đề thi thử TN THPT 2022 môn Toán trường chuyên Phan Bội Châu – Nghệ An : + Cho hàm số y = f(x) là hàm đa thức bậc bốn, có đồ thị nhận đường thẳng x = -3,5 làm trục đối xứng. Biết diện tích hình phẳng của phần giới hạn bởi đồ thị hàm số y = f(x), y = f'(x) và hai đường thẳng x = -5, x = -2 có giá trị là 127/50 (hình vẽ bên). Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục hoành bằng? + Từ một tấm tôn hình tam giác đều cạnh bằng 6m, ông A cắt thành một tấm tôn hình chữ nhật và cuộn lại được một cái thùng hình trụ (như hình vẽ). Ông A làm được cái thùng có thể tích tối đa là V (vật liệu làm nắp thùng coi không liên quan). Giá trị của V thỏa mãn? + Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A1B1C1 có A1(3;-1;1), hai đỉnh B và C thuộc trục Oz và AA1 = 1 (C không trùng O). Biết u = (a;b;1) là một véctơ chỉ phương của đường thẳng A1C. Giá trị của a2 + b2 bằng?
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Trần Quốc Tuấn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán lần 2 năm học 2021 – 2022 trường THPT Trần Quốc Tuấn, tỉnh Quảng Ngãi; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008 009 010 011 012. Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Trần Quốc Tuấn – Quảng Ngãi : + Trong không gian với hệ tọa độ Oxyz cho các mặt phẳng P x y z  2 2 1 0 Q x y z 2 2 1 0. Gọi S là mặt cầu có tâm thuộc trục hoành, đồng thời S cắt mặt phẳng P theo giao tuyến là một đường tròn có bán kính bằng 3 và S cắt mặt phẳng Q theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu S thỏa yêu cầu. + Một hộp đựng 15 viên bi khác nhau trong đó có 8 viên bi xanh, 5 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp trên. Tính xác suất để trong 6 viên bi lấy ra có ít nhất 1 viên màu vàng và không quá 4 viên bi đỏ. + Trong không gian với hệ tọa độ Oxyz cho mặt phẳng đi qua điểm M 1 2 3 và cắt các tia Ox Oy Oz lần lượt tại A B C sao cho độ dài OA OB OC theo thứ tự tạo thành một cấp số nhân có công bội bằng 3. Tính khoảng cách từ gốc tọa độ O tới mặt phẳng.
Đề thi thử Toán tốt nghiệp THPT 2022 trường Nguyễn Bỉnh Khiêm - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp Trung học Phổ thông năm 2022 trường THPT Nguyễn Bỉnh Khiêm, tỉnh Đắk Lắk; đề thi có đáp án mã đề 887 047 987 508. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 trường Nguyễn Bỉnh Khiêm – Đắk Lắk : + Cho hàm số bậc bốn y fx có đồ thị là đường cong trong hình vẽ bên. Biết hàm số f x đạt cực trị tại ba điểm 123 xxx thỏa mãn 1 23 x xx 1 2. Gọi 1 S và 2 S là diện tích của hai hình phẳng được gạch trong hình bên. Tỉ số 1 2 S S bằng? + Trong không gian tọa độ Oxyz cho mặt cầu 2 2 2 5 S x 1 y 1 z 6 mặt phẳng P x y z 1 0 và điểm A 1 1 1. Điểm M thay đổi trên đường tròn giao tuyến của (P) và (S). Giá trị lớn nhất của P AM là? + Trong không gian với hệ trục tọa độ Oxyz cho bốn điểm A 1 1 4 B 5 1 3 C 3 1 5 và điểm D m 2 2 với m là tham số. Xác định m để bốn điểm ABC và D tạo thành bốn đỉnh của hình tứ diện.