Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG Toán THPT năm 2020 2021 sở GD ĐT TP HCM

Nội dung Đề chọn đội tuyển HSG Toán THPT năm 2020 2021 sở GD ĐT TP HCM Bản PDF Ngày 20 và 21 tháng 10 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán THPT năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT TP HCM gồm 02 bài thi; bài thi thứ nhất gồm 04 bài toán, thời gian làm bài 180 phút; bài thi thứ hai gồm 04 bài toán, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT TP HCM : + Cho tam giác ABC nhọn không cân, nội tiếp đường tròn (O), có đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Tia AI cắt các đường thẳng DE, DF lần lượt tại X, Y. Đường tròn tâm M đường kính XY cắt BC tại các điểm S, T. a) Chứng minh rằng tiếp tuyến tại X, Y của đường tròn (DXY) cắt nhau trên đường cao qua đỉnh A của tam giác ABC và AX.AY = AS.AT. b) Chứng minh rằng đường tròn (MST) tiếp xúc với hai đường tròn (O) và (I). + Cho n là số nguyên dương thỏa mãn a(n) (hàm Euler) là lũy thừa của 2. a) Chứng minh rằng mọi ước nguyên tố lẻ (nếu có) của n đều có dạng 2^n + 1 với k thuộc N. b) Tìm n biết rằng n là số hoàn hảo (số hoàn hảo là số bằng với tổng các ước nguyên dương nhỏ hơn nó). + Bàn cờ vua “kỳ quặc” cũng là một hình vuông 8 x 8 nhưng vị trí các ô đen trắng không giống bàn cờ vua thông thường mà được sắp xếp thỏa mãn điều kiện: số ô đen trong mỗi cột bằng nhau và số ô đen trong mỗi hàng đôi một khác nhau. a) Hỏi số ô đen và số ô trắng trong bàn cờ vua “kỳ quặc” có bằng nhau hay không? b) Hỏi trong bàn cờ vua “kỳ quặc” có thể có tối đa bao nhiêu cặp ô có chung cạnh và khác màu?

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 - 2019 sở GD và ĐT Thừa Thiên Huế
Kỳ thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thừa Thiên Huế được diễn ra vào sáng ngày hôm qua (ngày 14/11/2018), đề gồm 1 trang với 6 bài toán tự luận, học sinh làm bài trong thời gian 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi tác giả N.V Sơn). Trích dẫn đề thi chọn HSG cấp tỉnh Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thừa Thiên Huế : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ: 5x – 2y – 19 = 0 và đường tròn (C): x^2 + y^2 – 4x-2y = 0. Từ một điểm M nằm trên đường thẳng Δ kẻ hai tiếp tuyến MA, MB đến đường tròn (C) với A, B là hai tiếp điểm. Viết phương trình đường tròn ngoại tiếp tam giác AMB biết AB = √10. [ads] + Cho tập A = {0;1;2;3;4;5;6}. Gọi S là tập hợp các số tự nhiên gồm 5 chữ số khác nhau được chọn từ các phần tử của tập A. Chọn ngẫu nhiên 1 số từ tập S. Tính xác suất để số được chọn chia hết cho 15. + Cho tam giác đều OAB có AB = a. Trên đường thẳng (d) đi qua O vuông góc với mặt phẳng (DAB) lấy một điểm M sao cho OM = x. Gọi E, F lần lượt là hình chiếu vuông góc của A lên MB và OB. Đường thẳng EF cắt đường thẳng (d) tại N. Chứng minh rằng AN vuông góc với BM. Xác định x theo a để thể tích khối tứ diện ABMN nhỏ nhất và tính giá trị nhỏ nhất đó.
Đề thi chọn học sinh giỏi cấp huyện Toán 12 năm 2018 - 2019 sở GD và ĐT Cao Bằng
Đề thi chọn học sinh giỏi cấp huyện Toán 12 năm 2018 – 2019 sở GD và ĐT Cao Bằng gồm 1 trang với 6 bài toán tự luận, đề được biên soạn nhằm tuyển chọn các em học sinh giỏi Toán 12 để bồi dưỡng và tạo điều kiện để các em tham gia các kỳ thi HSG Toán ở cấp cao hơn như thi học sinh giỏi cấp tỉnh, cấp quốc gia … đề thi có lời giải chi tiết. Trích dẫn đề thi chọn học sinh giỏi cấp huyện Toán 12 năm 2018 – 2019 sở GD và ĐT Cao Bằng : + Một khách sạn có 50 phòng. Nếu mỗi phòng cho thuê với giá 400 ngàn đồng một ngày thì toàn bộ phòng được thuê hết. Biết rằng cứ mỗi lần tăng giá lên 20 ngàn đồng thì có thêm hai phòng bỏ trống không có người thuê. Hỏi giám đốc khách sạn phải chọn giá phòng mới là bao nhiêu để thu nhập của khách sạn trong ngày là lớn nhất? [ads] + Một đội ngũ cán bộ khoa học gồm 8 nhà Toán học nam, 5 nhà Vật lý nữ và 3 nhà Hóa học nữ. Người ta chọn ra từ đó 4 người để đi công tác, tính xác suất sao cho trong 4 người được chọn phải có nữ và có đủ ba bộ môn. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x – y – 2 = 0, phương trình cạnh AC: x + 2y – 5 = 0. Biết trọng tâm của tam giác G(3;2). Xác định tọa độ điểm A và viết phương trình cạnh BC.
Đề thi KSCL đội tuyển HSG Toán 12 năm 2018 - 2019 trường Yên Lạc 2 - Vĩnh Phúc
Đề thi KSCL đội tuyển HSG Toán 12 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 1 trang và 7 bài toán, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi KSCL đội tuyển HSG Toán 12 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Một hộp đựng 9 tấm thẻ được đánh số từ 1 đến 9. Hỏi phải rút ít nhất bao nhiêu thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho 4 phải lớn hơn 5/6. + Cho hàm số y = (2x – 4)/(x + 1) có đồ thị là (C) và hai điểm M (-3;0), N(-1;-1). Tìm trên đồ thị hàm số (C) hai điểm A, B sao cho chúng đối xứng nhau qua đường thẳng MN. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = 3, BC = 6, mặt phẳng (SAB) vuông góc với đáy, các mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) các góc bằng nhau. Biết khoảng cách giữa hai đường thẳng SA và BD bằng 6. Tính thể tích khối chóp S.ABCD và cosin góc giữa hai đường thẳng SA và BD.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 - 2019 sở GD và ĐT Thái Nguyên
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Thái Nguyên được biên soạn và tổ chức thi ngày 23 tháng 10 năm 2018 nhằm tuyển chọn các em giỏi Toán 12 nhất đang học tập tại các trường THPT tại tỉnh Thái Nguyên, để bồi dưỡng thêm và tạo điều kiện để các em thử sức ở cuộc thi Toán 12 cấp Quốc gia, đề được biên soạn theo hình thức tự luận với 1 trang và 5 bài toán, thí sinh làm bài trong 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2018 – 2019 sở GD và ĐT Thái Nguyên : + Cho hàm số y = x^3 – 3x^2 + 4 có đồ thị (C), đường thẳng (d) đi qua A(1;2) và có hệ số góc m. Tìm m để (d) cắt (C) tại ba điểm phân biệt A, B, C sao cho BC = 4√2. [ads] + Cho các số thực dương x, y thỏa mãn điều kiện x^2 + 2y^2 = 8/3. Tìm giá trị lớn nhất của biểu thức. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng ABC là điểm H thỏa mãn BI = 3IH và góc giữa hai mặt phẳng(SAB);(SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a.