Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tuyển sinh 10 năm 2024 2025 trường THCS Trần Phú Bắc Giang

Nội dung Đề thi thử Toán tuyển sinh 10 năm 2024 2025 trường THCS Trần Phú Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử Toán tuyển sinh 10 năm 2024 - 2025 trường THCS Trần Phú Bắc Giang Đề thi thử Toán tuyển sinh 10 năm 2024 - 2025 trường THCS Trần Phú Bắc Giang Chúng ta sẽ cùng khám phá đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 của trường THCS Trần Phú, thành phố Bắc Giang, tỉnh Bắc Giang. Kỳ thi sẽ diễn ra vào ngày 20 tháng 02 năm 2024 đầy hấp dẫn. 1. Bài toán thứ nhất đưa ra vấn đề về việc tăng diện tích sân bóng hình chữ nhật của trường. Học sinh sẽ được thách thức khi phải tính toán để tìm ra kích thước ban đầu của sân bóng. 2. Bài toán thứ hai liên quan đến tòa chung cư cao tầng ở TP Bắc Giang và việc xác định số tầng của tòa nhà dựa trên thông tin về chiều cao của cột đèn và chiều cao của mỗi tầng. 3. Bài toán cuối cùng về việc tính vận tốc của người đi bộ tập thể dục trên đoạn đường ven sông Thương là một thử thách thú vị với những thông tin về khoảng cách và vận tốc của người đó. Bằng cách thử sức với những bài toán thú vị cùng với đề thi thử Toán, các em học sinh sẽ cải thiện kỹ năng giải quyết vấn đề và chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Bến Tre, tỉnh Bến Tre; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 trường THPT chuyên Hà Tĩnh : + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A và B. Trên tia đối của tia AB lấy điểm M, kẻ các tiếp tuyến ME, MF với đường tròn (O’), trong đó E và F thuộc đường tròn (O’), F nằm trong đường tròn (O). Hai đường thẳng AE và AF cắt đường tròn (O) lần lượt tại P và Q (P và Q khác A). Tia EF cắt PQ tại K. a) Chứng minh tam giác BKP đồng dạng với tam giác BFA. b) Gọi I và J lần lượt là giao điểm của AB với OO’ và EF. Chứng minh IJE = IFM. c) Chứng minh PQ = 2OA2 – OK2. + Cho các số thực dương a b c thỏa mãn a + b + c = 3abc. Tìm giá trị lớn nhất của biểu thức P. + Lớp 9A có 34 học sinh, các học sinh lớp này đều tham gia một số câu lạc bộ của trường. Mỗi học sinh của lớp tham gia đúng một câu lạc bộ. Nếu chọn ra 10 học sinh bất kì của lớp này thì luôn có ít nhất 3 học sinh tham gia cùng một câu lạc bộ. Chứng minh rằng có một câu lạc bộ gồm ít nhất 9 học sinh lớp 9A tham gia.
Đề vào lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Hạ Long - Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Hạ Long – Quảng Ninh : + Chứng minh rằng với x là số nguyên bất kỳ thì 25x + 1 không thể viết được dưới dạng tích hai số nguyên liên tiếp. + Cho tam giác ABC có ba góc nhọn, đường cao AH. Đường tròn (O) đường kính BC cắt AB tại E (E khác B). Gọi D là một điểm trên cung nhỏ BE (D khác B và D khác E). Hai đường thẳng DC và AH cắt nhau tại G, đường thẳng EG cắt đường tròn (O) tại M (M khác E), hai đường thẳng AH và BM cắt nhau tại I, đường thẳng CI cắt đường tròn (O) tại P (P khác). a) Chứng minh tứ giác DGIP nội tiếp; b) Chứng minh GA.GI = GE.GM; c) Hai đường thẳng AD và BC cắt nhau tại N, DB và CP cắt nhau tại K. Chứng minh hai đường thẳng NK và AH song song với nhau. + Chứng minh rằng trong 16 số nguyên dương đôi một khác nhau nhỏ hơn 23, bao giờ cũng tìm được hai số khác nhau có tích là số chính phương.