Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường tròn ôn thi vào lớp 10

Tài liệu gồm 26 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O). + Đường tròn đi qua các điểm A A … A 1 2 n gọi là đường tròn ngoại tiếp đa giác A A … A 1 2 n. + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A A … A 1 2 n gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp. + Trong tam giác đều tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó. Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó. PHƯƠNG PHÁP: Để chứng minh các điểm A A … A 1 2 n cùng thuộc một đường tròn ta chứng minh các điểm A A … A 1 2 n cách đều điểm O cho trước. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 1. Khi một đường thẳng có hai điểm chung A B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: Nếu M nằm ngoài đoạn AB thì MA MB MO R 2 2; Nếu M nằm trong đoạn AB thì MA MB R MO 2 2. Mối liên hệ khoảng cách và dây cung: 2 2 2 AB R OH 4. 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O). Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm. Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì: + Điểm đó cách đều hai tiếp điểm. + Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến. + Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm. + Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó. 3. Khi một đường thẳng và đường tròn (O) không có điểm chung ta nói đường thẳng và đường tròn (O) không giao nhau. Khi đó OH R. 4. Đường tròn tiếp xúc với 3 cạnh tam giác là đường tròn nội tiếp tam giác. Đường tròn nội tiếp có tâm là giao điểm 3 đường phân giác trong của tam giác. 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác. Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C. Mỗi tam giác có 3 đường tròn bàng tiếp. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN Xét hai đường tròn (O;R) và (O’;R’): A. Hai đường tròn tiếp xúc nhau: Khi hai đường tròn tiếp xúc nhau thì có thể xảy ra 2 khả năng: Hai đường tròn tiếp xúc ngoài; Hai đường tròn tiếp xúc trong. B. Hai đường tròn cắt nhau: Khi hai đường tròn 1 2 O O cắt nhau theo dây AB thì O O AB 1 2 tại trung điểm H của AB. Hay AB là đường trung trực của O O1 2. Khi giải toán liên quan dây cung của đường tròn, hoặc cát tuyến ta cần chú ý kẻ thêm đường phụ là đường vuông góc từ tâm đến các dây cung.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp các bài toán hình học phẳng ôn thi vào THPT năm học 2018 2019
Nội dung Tổng hợp các bài toán hình học phẳng ôn thi vào THPT năm học 2018 2019 Bản PDF - Nội dung bài viết Tổng hợp bài tập hình học phẳng ôn thi vào THPT 2018-2019 Tổng hợp bài tập hình học phẳng ôn thi vào THPT 2018-2019 Tài liệu này được biên soạn bởi hai tác giả là Tạ Công Hoàng và Nguyễn Đăng Khoa, với 119 trang tập hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT trong năm học 2018-2019. Hình học phẳng là một dạng toán không thể thiếu khi ôn thi vào trường phổ thông.
Tổng ôn tập Toán THCS thi vào
Nội dung Tổng ôn tập Toán THCS thi vào Bản PDF - Nội dung bài viết Tổng ôn tập Toán THCS thi vào lớp 10 Tổng ôn tập Toán THCS thi vào lớp 10 Cuốn sách Tổng ôn tập Toán THCS thi vào lớp 10 là tài liệu học tập quan trọng cho học sinh lớp 9 chuẩn bị cho kỳ thi chuyển cấp lên lớp 10. Sách bao gồm 193 trang hệ thống các chủ đề Toán học chính từ lớp 6 đến lớp 9, giúp học sinh ôn tập và củng cố kiến thức một cách toàn diện. Với sự biên soạn của các tác giả uy tín như Mai Công Mãn, Nguyễn Trọng Dương, Nguyễn Thế Vận, Nguyễn Thị Hiền, Thiều Thị Huyền, sách mang đến cho học sinh những kiến thức cơ bản và quan trọng trong môn Toán. Nội dung sách được chia thành hai phần chính: phần Đại số và phần Hình học, bao gồm các chủ đề như biến đổi đồng nhất, hàm số và đồ thị, phương trình, hệ phương trình, định lý Talet, đường tròn, hình học không gian. Qua sách Tổng ôn tập Toán THCS thi vào lớp 10, học sinh sẽ có cơ hội ôn tập lại những kiến thức đã học, rèn luyện kỹ năng giải các bài tập phức tạp và chuẩn bị tốt cho kỳ thi vào lớp 10. Đồng thời, sách cũng là tài liệu hữu ích để học sinh tiếp tục học tốt môn Toán THPT sau này.
16 chuyên đề ôn thi vào môn Toán
Nội dung 16 chuyên đề ôn thi vào môn Toán Bản PDF - Nội dung bài viết Sách Ôn Thi Toán Lớp 10 - 16 Chuyên Đề Sách Ôn Thi Toán Lớp 10 - 16 Chuyên Đề Sytu xin giới thiệu đến quý thầy cô và các em học sinh cuốn sách "16 chuyên đề ôn thi vào lớp 10 môn Toán", với 192 trang bao gồm 9 chuyên đề Đại số và 7 chuyên đề Hình học. Sách được biên soạn bởi các tác giả: Bùi Văn Tuyên và Nguyễn Đức Trường. Phần Đại số bao gồm: Chuyên đề 1: Rút gọn và tính giá trị của biểu thức Chuyên đề 2: Giải phương trình và hệ phương trình bậc nhất hai ẩn Chuyên đề 3: Phương trình bậc hai một ẩn Chuyên đề 4: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình Chuyên đề 5: Hàm số và đồ thị Chuyên đề 6: Chứng minh bất đẳng thức Chuyên đề 7: Giải bất phương trình Chuyên đề 8: Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức Chuyên đề 9: Giải toán có nội dung số học Phần Hình học bao gồm: Chuyên đề 10: Chứng minh các hệ thức hình học Chuyên đề 11: Chứng minh tứ giác nội tiếp và nhiều điểm cùng nằm trên đường tròn Chuyên đề 12: Chứng minh quan hệ tiếp xúc giữa đường thẳng và đường tròn hoặc hai đường tròn Chuyên đề 13: Chứng minh điểm cố định Chuyên đề 14: Các bài tập có nội dung tính toán Chuyên đề 15: Quỹ tích và dựng hình Đây sẽ là nguồn tư liệu hữu ích giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán. Hy vọng sách sẽ giúp đỡ các em hiểu rõ hơn về các chuyên đề và nâng cao kiến thức Toán của mình.
Tài liệu chuyên Toán THCS
Nội dung Tài liệu chuyên Toán THCS Bản PDF - Nội dung bài viết Tài liệu chuyên Toán THCS Tài liệu chuyên Toán THCS Tài liệu chuyên Toán THCS bao gồm 70 trang với nhiều chuyên đề bồi dưỡng Toán phù hợp cho học sinh khối chuyên và học sinh giỏi các lớp 6, 7, 8, 9. Đây là các chuyên đề thường xuất hiện trong các đề thi HSG, giúp học sinh rèn luyện và nâng cao kiến thức Toán một cách thực tế và hiệu quả.