Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Hoàng Việt

Tài liệu gồm 138 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3. MỤC LỤC : Chương 3 . NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 1. §1 – TÍNH NGUYÊN HÀM – SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC 1. A KIẾN THỨC CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Áp dụng bảng công thức nguyên hàm 2. + Dạng 2. Tách hàm dạng tích thành tổng 7. + Dạng 3. Tách hàm dạng phân thức thành tổng 9. C BÀI TẬP TỰ LUYỆN 14. §2 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 17. A CÁC DẠNG TOÁN THƯỜNG GẶP 17. + Dạng 1. Đổi biến dạng hàm lũy thừa 17. + Dạng 2. Đổi biến dạng hàm phân thức 19. + Dạng 3. Đổi biến dạng hàm vô tỉ 20. + Dạng 4. Đổi biến dạng hàm lượng giác 22. + Dạng 5. Đổi biến dạng hàm mũ, hàm lô-ga-rit 24. B BÀI TẬP TỰ LUYỆN 27. §3 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 30. A CÁC DẠNG TOÁN THƯỜNG GẶP 30. + Dạng 1. Nguyên hàm từng phần với “u = đa thức” 30. + Dạng 2. Nguyên hàm từng phần với “u = lôgarit” 31. + Dạng 3. Nguyên hàm kết hợp đổi biến số và từng phần 33. + Dạng 4. Nguyên hàm từng phần dạng “lặp” 35. + Dạng 5. Nguyên hàm từng phần dạng “hàm ẩn” 36. B BÀI TẬP TỰ LUYỆN 38. §4 – TÍNH TÍCH PHÂN – SỬ DỤNG ĐỊNH NGHĨA, TÍNH CHẤT 41. A CÁC DẠNG TOÁN THƯỜNG GẶP 41. + Dạng 1. Sử dụng định nghĩa, tính chất tích phân 41. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản 45. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản 47. B BÀI TẬP TỰ LUYỆN 51. §5 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 54. A CÁC DẠNG TOÁN THƯỜNG GẶP 54. + Dạng 1. Đổi biến loại t = u(x) 54. + Dạng 2. Lượng giác hóa 59. B BÀI TẬP TỰ LUYỆN 61. §6 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN 65. A CÁC DẠNG TOÁN THƯỜNG GẶP 65. + Dạng 1. Tích phân từng phần với “u = đa thức” 65. + Dạng 2. Tích phân từng phần với “u = logarit” 67. B BÀI TẬP TỰ LUYỆN 70. §7 – TÍCH PHÂN HÀM ẨN 74. A CÁC DẠNG TOÁN THƯỜNG GẶP 74. + Dạng 1. Sử dụng tính chất tính phân không phụ thuộc biến 74. + Dạng 2. Tìm hàm f(x) bằng phương pháp đổi biến số 76. + Dạng 3. Tìm hàm f(x) bằng phương pháp đưa về “đạo hàm đúng” 77. + Dạng 4. Phương pháp tích phân từng phần 79. + Dạng 5. Phương pháp ghép bình phương 81. B BÀI TẬP TỰ LUYỆN 84. §8 – ỨNG DỤNG TÍCH PHÂN – TÍNH DIỆN TÍCH HÌNH PHẲNG 89. A CÁC DẠNG TOÁN THƯỜNG GẶP 89. + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x) 89. + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số 97. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế 99. B BÀI TẬP TỰ LUYỆN 103. §9 – ỨNG DỤNG TÍCH PHÂN – TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY 107. A CÁC DẠNG TOÁN THƯỜNG GẶP 107. + Dạng 1. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox 107. + Dạng 2. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox 108. + Dạng 3. Tọa độ hóa một số bài toán thực tế 113. B BÀI TẬP TỰ LUYỆN 117. §10 – ỨNG DỤNG TÍCH PHÂN – MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG 120. A CÁC DẠNG TOÁN THƯỜNG GẶP 120. + Dạng 1. Cho hàm vận tốc, tìm quãng đường di chuyển của vật 120. + Dạng 2. Cho đồ thị hàm vận tốc, tìm quãng đường di chuyển của vật 121. + Dạng 3. Cho hàm gia tốc, tìm quãng đường di chuyển của vật 122. B BÀI TẬP TỰ LUYỆN 124. §11 – ĐỀ TỔNG ÔN 126. A ĐỀ SỐ 1 126. B ĐỀ SỐ 2 129.

Nguồn: toanmath.com

Đọc Sách

Các phương pháp tìm Nguyên hàm - Nguyễn Đình Sỹ
Tài liệu gồm 34 trang hướng dẫn các phương pháp tìm nguyên hàm của hàm số, tài liệu do thầy Nguyễn Đình Sĩ biên soạn. Để tìm họ nguyên hàm của một hàm số y = f(x), cũng có nghĩa là ta đi tính một tích phân bất định: I = ∫f(x)dx, ta có ba phương pháp: + Phương pháp phân tích . + Phương pháp đổi biến số . + Phương pháp tích phân từng phần Do đó điều quan trọng là f(x) có dạng như thế nào để ta nghiên cứu có thể phân tích chúng sao cho có thể sử dụng bảng nguyên hàm cơ bản để tìm được nguyên hàm của chúng hoặc sử dụng hai phương pháp còn lại. Sau đây là một số gợi ý giúp các em có thể nhận biết dạng của f(x) mà có phương pháp phân tích cụ thể, từ đó tìm được nguyên hàm của chúng. [ads] PHƯƠNG PHÁP TÌM NGUYÊN HÀM BẰNG CÁCH PHÂN TÍCH I. Trường hợp f(x) là một hàm đa thức II. Trường hợp f(x) là phân thức hữu tỷ: f(x) = P(x)/Q(x) Nếu bậc của P(x) cao hơn hoặc bằng bậc của Q(x), thì bằng phép chia đa thức ta lấy P(x) chia cho Q(x) được một đa thức A(x) và một số dư R(x) mà bậc của R(x) thấp hơn bậc của Q(x). Như vậy tích phân của A(x) ta tính được ngay (như đã trình bày ở trên). Do vậy ta chỉ nghiên cứu cách tìm nguyên hàm của f(x) trong trường hợp bậc tử thấp hơn bậc của mẫu, nghĩa là f(x) có dạng: f(x) = R(x). + Trường hợp mẫu số không có nghiệm thực có nghiệm thực (Tức là mẫu số vô nghiệm) + Trường hợp mẫu số có nhiều nghiệm thực đơn + Trường hợp mẫu số có cả trường hợp không có nghiệm thực và trường hợp có nhiều nghiệm thực đơn III. Nguyễn hàm các hàm số lượng giác Để xác định nguyên hàm các hàm số lượng giác ta cần linh hoạt lựa chọn một trong các phương pháp cơ bản sau: 1. Sử dụng dạng nguyên hàm cơ bản 2. Sử dụng phương pháp biến đổi lượng giác đưa về các nguyên hàm cơ bản 3. Phương pháp đổi biến 4. Phương pháp tích phân từng phần TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ TÌM NGUYÊN HÀM BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN
Phương pháp giải các dạng Tích phân thường gặp
Tài liệu gồm 26 trang giới thiệu và hướng dẫn phương pháp giải các dạng tích phân thường gặp, đây là các dạng tích phân thương có trong đề thi THPT Quốc gia và đề thi tuyển sinh Cao Đẳng – Đại học. Nội dung tài liệu I. CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 1. Tính tích phân bằng định nghĩa ,tính chất và bảng nguyên hàm cơ bản 2. Phương pháp tích phân từng phần 3. Phương pháp đổi biến số + Phương pháp đổi biến dạng I + Phương pháp đổi biến dạng II 4. Phương pháp tích phân từng phần [ads] II. TÍCH PHÂN MỘT SỐ HÀM SỐ THƯỜNG GẶP 1. Tích phân hàm số phân thức 2. Tích phân các hàm lượng giác + Dạng 1: Biến đổi về tích phân cơ bản + Dạng 2: Đổi biến số để hữu tỉ hóa tích phân hàm lượng giác Dạng 3: Đổi biến số để đưa về tích phân hàm lượng giác đơn giản hơn 3. Tích phân hàm vô tỉ + Dạng 1: Biến đổi về tích phân vô tỉ cơ bản + Dạng 2: Biến đổi về tích phân hàm lượng giác + Dạng 3: Biến đổi làm mất căn 4. Tích phân chứa dấu giá trị tuyệt đối III. TÍCH PHÂN MỘT SỐ HÀM ĐẶC BIỆT
Phương pháp giải các bài toán Tích phân - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 33 trang hướng dẫn phương pháp giải các dạng toán tích phân, các bài toán được chọn lọc từ các đề thi tuyển sinh Cao Đẳng – Đại học. Nội dung tài liệu: Vấn đề 1: BIẾN ĐỔI VỀ TỔNG – HIỆU CÁC TÍCH PHÂN CƠ BẢN Vấn đề 2: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ Vấn đề 3: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN Vấn đề 4: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHỐI HỢP Vấn đề 5: ỨNG DỤNG CỦA TÍCH PHÂN [ads]
Chuyên đề trắc nghiệm ứng dụng tích phân tính thể tích
Tài liệu gồm 33 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Tính thể tích vật thể. 2. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Ox. 3. Tính thể tích vật tròn xoay sinh bởi diện tích S quay quanh trục Oy. 4. Ứng dụng tính thể tích khối cầu, khối chỏm cầu và một số hình đặc biệt. 5. Hệ thống Ví dụ minh họa. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.