Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phúc Yên Vĩnh Phúc

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phúc Yên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 tại Phúc Yên - Vĩnh Phúc Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 tại Phúc Yên - Vĩnh Phúc Chúng tôi xin giới thiệu đến các thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2023 - 2024 tại phòng Giáo dục và Đào tạo thành phố Phúc Yên, tỉnh Vĩnh Phúc. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Phúc Yên - Vĩnh Phúc: - Trong ngày Tết Trung thu, một rạp chiếu phim đã phục vụ khán giả một bộ phim hoạt hình với giá vé như sau: Loại I (dành cho trẻ từ 6 đến 13 tuổi): 50.000 đồng một vé và Loại II (dành cho người trên 13 tuổi): 100.000 đồng một vé. Để tránh lỗ, rạp chiếu phim cần thu được ít nhất 20 triệu đồng. Sau khi bán vé, nhân viên đã báo cáo lãnh đạo rằng đã bán được tổng cộng 500 vé. Lãnh đạo rạp chiếu phim khẳng định rằng họ không phải bù lỗ. Hãy giải thích tại sao họ đưa ra khẳng định này và tính số tiền lãi tối thiểu mà rạp đã thu được. - Xét ba điểm A, O, B thẳng hàng (O nằm giữa A và B). Vẽ hai tia Ax, By cùng vuông góc và cùng phía với AB. Dựng góc vuông uOv, tia Ou cắt Ax tại C, tia Ov cắt By tại D. Biết OA = a, OB = b, OC = 2a. Hãy tính diện tích hình thang ABDC theo a, b. - Trong tam giác đều ABC, E là điểm trên cạnh AC (không trùng với A), K là trung điểm của AE. Đường thẳng IF vuông góc với AB tại F và cắt đường thẳng CD vuông góc với BC tại D. a) Chứng minh BCKF là hình thang cân. b) Tìm vị trí của E sao cho đoạn KD ngắn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2020 - 2021 sở GDĐT Yên Bái
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Yên Bái tổ chức kỳ thi chọn học sinh giỏi môn Toán bậc THCS năm học 2020 – 2021. Đề thi chọn học sinh giỏi Toán THCS năm 2020 – 2021 sở GD&ĐT Yên Bái gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Đại Từ - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT huyện Đại Từ, tỉnh Thái Nguyên; đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 150 phút.
Tuyển tập đề thi học sinh giỏi Toán 9
Tài liệu gồm 182 trang, được biên soạn và sưu tầm bởi ThS Nguyễn Chín Em, tuyển tập 35 đề thi học sinh giỏi Toán 9 có lời giải chi tiết, giúp học sinh lớp 9 rèn luyện để chuẩn bị cho kỳ thi HSG Toán 9 cấp trường, cấp huyện / cấp quận, cấp tỉnh / cấp thành phố. Đề số 1. Đề thi HSG Lớp 9 – Quận Ba Đình – TP Hà Nội năm 2017 (Trang 4). Đề số 2. Đề thi HSG Lớp 9 – Quận Cầu Giấy – TP Hà Nội năm 2017 – 2018 Vòng 1 (Trang 9). Đề số 3. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2010 – 2011 (Trang 14). Đề số 4. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2011 – 2012 (Trang 19). Đề số 5. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2012 – 2013 (Trang 24). Đề số 6. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2013 – 2014 (Trang 30). Đề số 7. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2014 – 2015 (Trang 35). Đề số 8. Đề thi HSG Lớp 9 – TP Hà Nội năm học 2016 – 2017 (Trang 41). Đề số 9. Đề thi HSG Lớp 9 – Quận Hoàn Kiếm – TP Hà Nội năm 2018 (Trang 47). Đề số 10. Đề thi Toán 9 HSG năm học 2011 Tp. Đà Nẵng (Trang 52). Đề số 11. Đề thi chọn học sinh giỏi Toán 9 năm học 2010 – 2011 Lâm Đồng (Trang 57). Đề số 12. Đề thi HSG lớp 9 Nghệ An Bảng A năm 2011 (Trang 62). Đề số 13. Đề thi chọn học sinh giỏi Toán 9 năm học 2010 – 2011 Quảng Bình (Trang 67). Đề số 14. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 An Giang (Trang 71). Đề số 15. HSG Toán 9 huyện Bình Giang tỉnh Hải Dương năm học 2012 – 2013 (Trang 77). Đề số 16. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 Tp. Đà Nẵng (Trang 81). Đề số 17. Đề thi HSG toán 9 tỉnh Hải Dương năm học 2012 – 2013 (Trang 85). Đề số 18. Đề thi chọn HSG Toán 9 năm học 2012 – 2013 Tỉnh Hà T˜ĩnh (Trang 90). Đề số 19. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 Kiên Giang (Trang 95). Đề số 20. Đề thi Toán 9 Học sinh giỏi năm học 2012 – 2013 tỉnh Quảng Ninh (Trang 99). Đề số 21. Đề thi chọn học sinh giỏi Toán 9 năm học 2012 – 2013 Tiền Giang (Trang 104). Đề số 22. Đề thi Toán 9 Học sinh gỏi năm học 2013 – 2014 Tỉnh Bắc Ninh (Trang 110). Đề số 23. Đề thi học sinh giỏi Toán 9 năm học 2013 – 2014 Nghi Xuân Hà Tĩnh (Trang 115). Đề số 24. Đề thi Toán 9 Học sinh gỏi năm học 2013 – 2014 Ninh Thuận (Trang 120). Đề số 25. Đề thi chọn học sinh giỏi Toán 9 năm học 2013 – 2014 V˜ĩnh Phúc (Trang 123). Đề số 26. Đề thi Toán 9 Học sinh gỏi năm học 2017 – 2018 An Giang (Trang 127). Đề số 27. Đề thi Toán 9 Học sinh gỏi năm học 2016 – 2017 Sở GD Bến Tre (Trang 132). Đề số 28. Đề thi Toán 9 Học sinh giỏi năm học 2016 – 2017 Hải Phòng (Trang 137). Đề số 29. Đề thi HSG Toán 9 Phú Lộc Thừa Thiên Huế 2017 (Trang 144). Đề số 30. Đề thi chọn học sinh giỏi Toán 9 năm học 2016 – 2017 Thanh Hóa (Trang 148). Đề số 31. Đề thi Toán 9 Học sinh giỏi năm học 2016 – 2017 Sở GD&ĐT Thừa Thiên Huế (Trang 153). Đề số 32. Đề thi chọn học sinh giỏi Toán 9 năm học 2016 – 2017 Thành phố Hồ Chí Minh (Trang 161). Đề số 33. Đề thi Toán 9 Học sinh giỏi năm học 2017 – 2018 Bình Định (Trang 166). Đề số 34. Đề thi chọn học sinh giỏi Toán 9 năm học 2017 – 2018 Hải Dương (Trang 171). Đề số 35. Đề thi chọn học sinh giỏi Toán 9 năm học 2017 – 2018 Huyện Tiền Hải – Tỉnh Thái Bình (Trang 178).
Đề thi HSG huyện Toán 9 năm 2020 - 2021 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi HSG huyện Toán 9 năm học 2020 – 2021 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG huyện Toán 9 năm 2020 – 2021 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho năm số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương. + Cho tam giác ABC vuông tại A, đường cao AH. a) Tìm giá trị của α để CH = 3BH. b) Chứng minh rằng. + Tìm các giá trị của m để nghiệm của phương trình (với m là tham số) là số dương.