Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu Toán 8 năm 2023 - 2024 phòng GDĐT Tam Nông - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tam Nông, tỉnh Phú Thọ; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2023 – 2024 phòng GD&ĐT Tam Nông – Phú Thọ : + Để lập một đội tuyển năng khiếu về bóng chuyền của một trường. Thầy thể dục đưa ra quy định: Mỗi bạn dự tuyển phải phát bóng đủ 10 lần, lần phát bóng đạt yêu cầu được cộng 3 điểm; lần phát bóng không đạt yêu cầu bị trừ 2 điểm. Bạn nào có số điểm từ 20 điểm trở lên sẽ được chọn vào đội tuyển. Nếu muốn vào đội tuyển phải phát bóng ít nhất bao nhiêu lần đạt yêu cầu? + Cho hình chữ nhật ABCD hai đường chéo cắt nhau tại O. P là một điểm di động trên đoạn thẳng OB (P khác O và B). M là điểm đối xứng của C qua P kẻ ME vuông góc với đường thẳng AD tại E và kẻ MF vuông góc với đường thẳng AB tại F. a) Chứng minh: MA song song với BD và AB là tia phân giác của MAC. b) Chứng minh E F P thẳng hàng. c) Chứng minh 2 EF MF không đổi khi P di động trên đoạn thẳng OB. + Gieo ngẫu nhiên một con xúc sắc ba lần liên tiếp, xác suất để số chấm ba lần gieo đều là các số chẵn là?

Nguồn: toanmath.com

Đọc Sách

Đề HSG Toán 8 năm 2017 - 2018 phòng GDĐT Duy Xuyên - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam : + Một vật thể chuyển động từ A đến B theo cách sau: đi được 4 m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây, … Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2 m/giây. Tính khoảng cách từ A đến B. + Cho tam giác ABC vuông tại A, phân giác BD. Gọi P, Q, R lần lượt là trung điểm của BD, BC, DC. a) Chứng minh APQR là hình thang cân. b) Biết AB = 6cm, AC = 8cm Tính độ dài của AR. + Cho hình bình hành ABCD. Một đường thẳng qua B cắt cạnh CD tại M, cắt đường chéo AC tại N và cắt đường thẳng AD tại K. Chứng minh.
Đề giao lưu học sinh giỏi Toán 8 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 8 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Các số nguyên từ 1 đến 10 được xếp xung quanh một đường tròn theo một thứ tự tùy ý. Chứng minh rằng với cách xếp đó luôn tồn tại ba số theo thứ tự liên tiếp có tổng lớn hơn hoặc bằng 17. + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: BH.BE + CH.CF = BC2. b) Chứng minh: H cách đều ba cạnh tam giác DEF. c) Trên đoạn HB, HC tương ứng lấy điểm M, N tùy ý sao cho HM = CN. Chứng minh đường trung trực của đoạn thẳng MN luôn đi qua một điểm cố định. + Tìm các giá trị của x để M có giá trị là số nguyên.
Đề giao lưu HSG Toán 8 năm 2016 - 2017 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án, lời giải và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác ABC phân giác AD. Trên nửa phẳng không chứa A bờ BC, vẽ tia Cx sao cho BCX = 1/2.BAC. Cx cắt AD tại E; I là trung điểm DE. Chứng minh rằng : a) ΔABD đồng dạng với ΔCED. b) AE2 > AB.AC. c) 4AB.AC = 4AI2 – DE2. d) Trung trực của BC đi qua E. + Cho a, b, c là các số nguyên. Chứng minh rằng: a5 + b5 + c5 – (a + b + c) chia hết cho 30. + Cho a, b, c là 3 số dương thỏa mãn: 1/(1 + a) + 1/(1 + b) + 1/(1 + c) = 2. Tìm giá trị lớn nhất của biểu thức Q = abc.