Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 trường PTNK TP HCM

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường PTNK TP HCM Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường PTNK TP HCM Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021-2022 của trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Đề tuyển sinh gồm các câu hỏi thú vị và phức tạp. Ví dụ, cho tam giác ABC vuông tại A. Các điểm E, F lần lượt thay đổi trên các cạnh AB, AC sao cho EF // BC. Gọi D là giao điểm của BF với CE và H là hình chiếu vuông góc của D lên EF. Đường tròn (I) đường kính EF cắt BF, CE tương ứng tại M, N (M khác F, N khác E). Bạn sẽ phải chứng minh rằng AD và đường tròn ngoại tiếp tam giác HMN đều đi qua tâm I của đường tròn (I). Ngoài ra, đề còn đưa ra câu hỏi liên quan đến việc chọn tập hợp chữ cái từ 26 chữ cái trong tiếng Việt. Ví dụ, nếu có N tập hợp (N > 6), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ bảng chữ cái. Bạn sẽ phải chứng minh rằng không có chữ cái nào xuất hiện trong 6 tập hợp từ N tập hợp đã cho. Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 trường PTNK TP HCM không chỉ là một bài kiểm tra về kiến thức mà còn là cơ hội để các em học sinh thể hiện khả năng logic, tư duy và sự sáng tạo trong giải quyết vấn đề. Chúc các em có kết quả tốt trong kì thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 - 2022 sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Tiền Giang; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Tiền Giang : + Cho tam giác ABC vuông tại A (AC < AB) có đường cao AH. Gọi D là điểm nằm trên đoạn thẳng AH (D khác A và H). Đường thẳng BD cắt đường tròn tâm C bán kính CA tại E và F (F nằm giữa B và D). Qua F vẽ đường thẳng song song với AE cắt hai đường thẳng AB và AH lần lượt tại M và N. a) Chứng minh BH.BC = BE.BF. b) Chứng minh HD là tia phân giác của góc EHF. c) Chứng minh F là trung điểm MN. + Trong mặt phẳng tọa độ Oxy, cho parabol 2 Pyx và đường thẳng dy x 2. Gọi A, B là hai giao điểm của đường thẳng (d) với parabol (P). Tìm tọa độ điểm M nằm trên trục hoành sao cho chu vi tam giác MAB nhỏ nhất. + Cho m, n là các số nguyên dương sao cho 2 2 mnm chia hết cho mn. Chứng minh rằng m là số chính phương.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 trường THPT chuyên Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên Toán – Tin) năm học 2021 – 2022 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường THPT chuyên Thái Bình : + Cho tam giác ABC nhọn AB AC nội tiếp trong đường tròn O có các đường cao BE CF cắt nhau tại H. Gọi S là giao điểm của các đường thẳng BC và EF, gọi M là giao điểm khác A của SA và đường tròn (O). a. Chứng minh rằng tứ giác AEHF nội tiếp và HM vuông góc với SA. b. Gọi I là trung điểm của BC. Chứng minh rằng SH vuông góc với AI. c. Gọi T là điểm nằm trên đoạn thằng HC sao cho AT vuông góc với BT. Chứng minh rằng hai đường tròn ngoại tiếp của các tam giác SMT và CET tiếp xúc với nhau. + Giả sử n là số tự nhiên thỏa mãn điều kiện n n 1 7 không chia hết cho 7. Chứng minh rằng 3 4 5 1 n n không là số chính phương. + Cho a b c là các số thực dương thỏa mãn 2 2 2 a b c abc 3. Tìm giá trị lớn nhất của biểu thức 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2 a b c T a b c b c a c a b.
Đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 - 2022 sở GDĐT Quảng Ngãi
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Ngãi; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 04 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (hệ chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Ngãi : + Cho đường tròn tâm O, bán kính R = 4cm và hai điểm B, C cố định trên (O), BC không là đường kính. Điểm A thay đổi trên (O) sao cho tam giác ABC nhọn. Gọi D, E, F lần lượt là chân các đường cao kẻ từ A, B, C của tam giác ABC. a) Chứng minh 𝐵𝐴𝐷 = 𝐶𝐴𝑂. b) Gọi M là điểm đối xứng của A qua BC, N là điểm đối xứng của B qua AC. Chứng minh rằng: CD.CN = CE.CM. c) Trong trường hợp ba điểm C, M, N thẳng hàng, tính độ dài đoạn thẳng AB. d) Gọi I là trung điểm của BC. Đường thẳng AI cắt EF tại K. Gọi H là hình chiếu vuông góc của K trên BC. CHứng minh rằng đường thẳng AH luôn đi qua một điểm cố định khi A thay đổi. + Cho tập hợp S gồm n số nguyên dương đôi một khác nhau (n >= 3) thỏa mãn tính chất: tổng của 3 phần tử bất kì trong S đều là số nguyên tố. Tìm giá trị lớn nhất có thể của n. + Cho hàm số y m x 2 2 (m là tham số) có đồ thị là đường thẳng (d). a) Tìm điều kiện của m để hàm số đồng biến trên ℝ. b) Tìm giá trị của m để khoảng cách từ gốc tọa độ O đến (d) bằng 1.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Quảng Nam; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 03 – 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 – 2022 sở GD&ĐT Quảng Nam : + Cho parabol (P): 2 y x và đường thẳng (d) y m x m 2 2 (m là tham số). Chứng minh rằng (d) luôn cắt (P) tại hai điểm A, B sao cho 1 1 2 M là trung điểm của đoạn thẳng AB, hai điểm H, K lần lượt là hình chiếu vuông góc của A, B trên trục hoành. Tính độ dài đoạn thẳng KH. + Cho hình vuông ABCD tâm O, điểm E nằm trên đoạn thẳng OB (E khác O, B), H là hình chiếu vuông góc của C trên đường thẳng AE. Gọi F là giao điểm của AC và DH. a) Chứng minh HD là tia phân giác của góc AHC. b) Chứng minh diện tích hình vuông ABCD bằng hai lần diện tích tứ giác AEFD. + Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F, E. Gọi H là giao điểm của BE và CF, đường thẳng AH cắt BC tại D. a) Chứng minh tứ giác ODFE nội tiếp đường tròn. b) Gọi K là giao điểm của AH và EF, I là trung điểm của AH. Đường thẳng CI cắt đường tròn (O) tại M (M khác C). Chứng minh CI vuông góc với KM.