Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Quốc Oai - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Quốc Oai – Hà Nội : + Nhà trường thành lập 3 đội thi tuyên truyền Văn hoá ứng xử. Trong đó, 2 3 số học sinh đội I bằng 8 11 số học sinh đội II và bằng 4 5 số học sinh đội III. Biết rằng số học sinh đội I ít hơn tổng số học sinh của đội II và đội III là 18 học sinh. Tính số học sinh của mỗi đội. + Một chiếc hộp có 12 quả bóng có kích thước và khối lượng như nhau. Mỗi quả bóng được ghi một trong các số khác nhau từ 1 đến 12. Lấy ngẫu nhiên một quả bóng trong hộp. Xét biến cố “số xuất hiện trên quả bóng là số nguyên tố”. Tính xác suất của biến cố trên. + Có 6 túi lần lượt chứa 18, 19, 21, 23, 25, 34 quả bóng. Có 5 túi chứa bóng màu đỏ, túi còn lại chứa bóng màu xanh. Bạn Quốc lấy 3 túi, bạn Oai lấy 2 túi, còn lại túi chứa bóng xanh. Khi đó, tổng số bóng của Quốc gấp đôi tổng số bóng của Oai. Hỏi: a/ Số bóng màu xanh? b/ Bạn Quốc lấy 3 túi chứa những số bóng nào?

Nguồn: toanmath.com

Đọc Sách

Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc
Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề Giao Lưu HSG Toán Lớp 7 Năm 2016-2017 Phòng GD&ĐT Tam Dương Vĩnh Phúc Đề Giao Lưu HSG Toán Lớp 7 Năm 2016-2017 Phòng GD&ĐT Tam Dương Vĩnh Phúc Chúng tôi xin trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 7 Đề Giao Lưu HSG Toán năm 2016-2017 của phòng GD&ĐT Tam Dương Vĩnh Phúc. Đề thi bao gồm đề thi, đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Chi tiết đề thi: 1. Xác định vị trí của điểm A trên tia Bx sao cho BM:BA = 1:2. 2. Chứng minh rằng DN vuông góc với AC. 3. Biểu diễn cách viết các số trong bảng ô vuông và chứng minh rằng có ít nhất hai tổng số bằng nhau trong từng cột, hàng và đường chéo. 4. Tính hiệu a-c với a, b, c là nghiệm của đa thức f(x). Đề thi khá thú vị và đầy thách thức, giúp các em học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic.
Đề học sinh giỏi lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Gia Viễn Ninh Bình
Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Gia Viễn Ninh Bình Bản PDF - Nội dung bài viết Giới thiệu Đề học sinh giỏi Toán lớp 7 năm 2016-2017 Giới thiệu Đề học sinh giỏi Toán lớp 7 năm 2016-2017 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 7 đề học sinh giỏi Toán lớp 7 năm học 2016-2017 do phòng GD&ĐT Gia Viễn - Ninh Bình tổ chức. Đề thi này hứa hẹn sẽ là cơ hội thú vị để các em thử sức và nâng cao kiến thức của mình trong môn Toán.
Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Quốc Oai Hà Nội
Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Giới thiệu đề thi học sinh giỏi huyện lớp 7 môn Toán năm 2016-2017 phòng GD ĐT Quốc Oai Hà Nội Giới thiệu đề thi học sinh giỏi huyện lớp 7 môn Toán năm 2016-2017 phòng GD ĐT Quốc Oai Hà Nội Xin chào quý thầy cô và các em học sinh lớp 7! Đây là đề thi học sinh giỏi huyện lớp 7 môn Toán năm 2016-2017 do phòng GD&ĐT Quốc Oai - Hà Nội tổ chức. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm, giúp các em ôn tập và kiểm tra kiến thức một cách hiệu quả. Trích dẫn một số câu hỏi từ đề thi: + Trong vòng bán kết giải bóng đá của trường THCS Phù Đổng có 4 đội thi đấu, gọi A là tập hợp các cầu thủ; B là tập hợp các số áo thi đấu. Quy tắc mỗi cầu thủ ứng với số áo của họ có phải là một hàm số không? Vì sao? + Cho ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ AB chứa điểm C, vẽ đoạn thẳng AE vuông góc và bằng AB. Trên nửa mặt phẳng bờ AC chứa điểm B, vẽ đoạn thẳng AD vuông góc và bằng AC. a/ Chứng minh: BD = CE. b/ Trên tia đối của tia MA lấy N sao cho MN = MA. Chứng minh: ADE = CAN. c/ Gọi I là giao điểm của DE và AM. Chứng minh. + Tìm các số tự nhiên x, y thỏa mãn: 2×2 + 3y2 = 77. Hy vọng đề thi sẽ giúp các em rèn luyện kỹ năng giải bài tập, phát triển tư duy logic và chuẩn bị tốt cho các kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh thành công!
Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016 2017 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016-2017 phòng GD ĐT Kim Thành Hải Dương Đề học sinh giỏi huyện lớp 7 môn Toán năm 2016-2017 phòng GD ĐT Kim Thành Hải Dương Chào các thầy, cô giáo và các em học sinh lớp 7. Sytu xin giới thiệu đến các bạn đề học sinh giỏi huyện Toán lớp 7 năm 2016-2017 từ phòng GD&ĐT Kim Thành - Hải Dương. Đề thi này bao gồm các câu hỏi có đáp án và lời giải chi tiết. Trích dẫn từ đề học sinh giỏi huyện Toán lớp 7 năm 2016-2017 phòng GD&ĐT Kim Thành - Hải Dương: + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. + Chứng minh rằng với n nguyên dương thì 3n+2 - 2n+2 + 3n - 2n chia hết cho 10. + Tìm các cặp số nguyên (x;y) thỏa mãn: x + 2y = 3xy + 3. Đề thi được thiết kế để giúp các em học sinh rèn luyện kỹ năng và kiến thức Toán một cách chi tiết và sâu sắc. Hy vọng rằng đề thi sẽ giúp các em tự tin hơn khi đối diện với các bài tập thách thức. Chúc các em thành công!