Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ - logarit - Hoàng Thanh Phong

Tài liệu gồm 41 trang, được biên soạn bởi thầy giáo Hoàng Thanh Phong, hướng dẫn phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ – logarit (có kết hợp tư duy, mẹo giải nhanh và máy tính Casio), đây là lớp bài toán vận dụng – vận dụng cao (VD – VDC) / nâng cao / khó, nhiều khả năng sẽ xuất hiện trong đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo. Trích dẫn tài liệu phương pháp hàm đặc trưng giải nhanh trắc nghiệm mũ – logarit – Hoàng Thanh Phong: + Có bao nhiêu cặp số nguyên (x;y) thỏa mãn 1 ≤ x ≤ 2020 và x + x^2 – 9^y = 3^y. + Có bao nhiêu giá trị nguyên dương của tham số m nhỏ hơn 2018 để phương trình log2 (m + √(m + 2^x)) = 2x có nghiệm thực? + Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn biểu thức sau log4 (x + y + 3) = log5 (x^2 + y^2 + 2x + 4y + 5)? Xem thêm : Phương pháp hàm số đặc trưng – Nguyễn Văn Rin

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm bất phương trình mũ
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bất phương trình mũ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. QUY TẮC XÉT DẤU VÀ CÁC BẤT PHƯƠNG TRÌNH CƠ BẢN ĐÃ HỌC. 1. Quy tắc xét dấu biểu thức. 2. Các dạng bất phương trình cơ bản đã học. II. BẤT PHƯƠNG TRÌNH MŨ CƠ BẢN. III. MỘT SỐ DẠNG TOÁN VỀ BẤT PHƯƠNG TRÌNH THƯỜNG GẶP. + Dạng 1: Phương pháp đưa về cùng cơ số. + Dạng 2: Phương pháp logarit hóa. + Dạng 3: Phương pháp đặt ẩn phụ. + Dạng 4: Phương pháp sử dụng tính đơn điệu của hàm số, phương pháp phân tích nhân tử, phương pháp đánh giá. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm phương trình logarit
Tài liệu gồm 41 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. DẠNG 1. PHƯƠNG TRÌNH CƠ BẢN. DẠNG 2. PHƯƠNG PHÁP ĐẶT ẨN PHỤ. DẠNG 3. PHƯƠNG PHÁP MŨ HÓA. DẠNG 4: PHƯƠNG PHÁP HÀM SỐ, ĐÁNH GIÁ. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm phương trình mũ
Tài liệu gồm 26 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình mũ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. LÝ THUYẾT TRỌNG TÂM 1. Phương trình mũ cơ bản. 2. Các phương pháp giải phương trình mũ. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Phương pháp 1. Đưa về cùng cơ số. Phương pháp 2. Lấy logarit hai vế phương trình (logarit hóa). Phương pháp 3. Đặt ẩn phụ. Phương pháp 4. Sử dụng tính đơn điệu của hàm số, phương pháp phân tích nhân tử, phương pháp đánh giá. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm hàm số lũy thừa, hàm số mũ và hàm số logarit
Tài liệu gồm 52 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. HÀM SỐ LŨY THỪA. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Tính chất của hàm số lũy thừa trên khoảng (0;+∞). 5. Đồ thị hàm số lũy thừa y = x^a trên khoảng (0;+∞). II. HÀM SỐ MŨ. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Đồ thị hàm số y = a^x. III. HÀM SỐ LOGARIT. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Tính chất. 5. Đồ thị hàm số y = loga x. CÁC DẠNG TOÁN: + Dạng 1. Tìm tập xác định của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 2. Tính đạo hàm của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 3. Tính đơn điệu và cực trị của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 4. Giá trị lớn nhất và nhỏ nhất hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 5. Đồ thị hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 6. Một số bài toán nâng cao về hàm số lũy thừa, hàm số mũ và hàm số logarit. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.