Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 trường THCS Nguyễn Công Trứ Hà Nội

Nội dung Đề thi thử Toán vào năm 2021 2022 trường THCS Nguyễn Công Trứ Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021 - 2022 trường THCS Nguyễn Công Trứ Hà Nội Đề thi thử Toán vào năm 2021 - 2022 trường THCS Nguyễn Công Trứ Hà Nội Sytu xin phép giới thiệu đến quý thầy cô và các em học sinh bộ đề thi thử Toán vào lớp 10 năm học 2021 - 2022 của trường THCS Nguyễn Công Trứ, Hà Nội. Bộ đề thi bao gồm đáp án và lời giải chi tiết để giúp các em tự ôn tập và kiểm tra kiến thức. Trích dẫn một số bài toán trong đề thi: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai trường A và B có tổng số 460 học sinh tham gia kỳ thi vào lớp 10 THPT; kết quả, cả hai trường có 403 học sinh thi đỗ. Riêng trường A số học sinh thi đỗ chiếm tỉ lệ 85%, riêng trường B số học sinh thi đỗ chiếm tỉ lệ 90%. Tính số học sinh tham gia kỳ thi vào lớp 10 THPT của mỗi trường. Một tháp nước có bể chứa là một hình cầu, đường kính bên trong của bể chứa đo được là 6 mét. Người ta dự tính lượng nước đựng đầy trong bể đủ cung cấp cho một khu dân cư trong 5 ngày. Biết khu dân cư đó có 1570 người. Hỏi người ta đã dự tính trung bình mỗi người dùng bao nhiêu lít nước trong một ngày? Cho đường tròn (O), hai đường kính AB và CD vuông góc nhau. Gọi M là điểm chuyển động trên cung nhỏ AC. Gọi I là giao điểm của BM và CD. ... (câu hỏi chi tiết về hình học) Đề thi thử Toán vào lớp 10 năm 2021 - 2022 trường THCS Nguyễn Công Trứ Hà Nội sẽ giúp các em học sinh rèn luyện kỹ năng giải bài toán, tư duy logic và chuẩn bị tốt cho kỳ thi chuyển cấp sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Bắc Ninh
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Ninh dành cho thí sinh thi vào các lớp chuyên Toán – chuyên Tin học; kỳ thi được diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Một bảng có kích thước 2n × 2n ô vuông, n là số nguyên dương. Người ta đánh dấu vào 3n ô bất kỳ của bảng. Chứng minh rằng có thể chọn ra n hàng và n cột của bảng sao cho các ô được đánh dấu đều nằm trên n hàng và n cột này. + Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp tam giác ABC, ABH, ACH. Chứng minh rằng đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác ABC có bán kính bằng nhau. + Cho các số a, b, c thỏa mãn điều kiện a + b + c = 6. Chứng minh rằng có ít nhất một trong ba phương trình sau có nghiệm x2 + ax + 1 = 0; x2 + bx + 1 = 0; x2 + cx + 1 = 0.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Bắc Giang gồm có 01 trang với 05 bài toán, đề được biên soạn theo dạng đề tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được tổ chức vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Bắc Giang : + Cho parabol (P) : y = x2 và đường thẳng (d): y = −mx + 2 − m (m là tham số). Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho biểu thức T = 1/(x1 + 1)^4 + 1/(x2 + 1)^4 đạt giá trị nhỏ nhất. + Trong mặt phẳng cho 2020 điểm phân biệt sao cho từ ba điểm bất kỳ luôn chọn ra được hai điểm có khoảng cách nhỏ hơn 1cm. Chứng minh rằng tồn tại một hình tròn có bán kính bằng 1cm chứa không ít hơn 1010 điểm trong 2020 điểm đã cho. + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Gọi M là trung điểm của đoạn thẳng BC, K là giao điểm của hai đường thẳng BC và EF. 1. Chứng minh rằng KB.KC = KE.KF và H là tâm đường tròn nội tiếp của tam giác DEF. 2. Qua điểm F kẻ đường thẳng song song với đường thẳng AC, đường thẳng này cắt các đường thẳng AK, AD lần lượt tại P và Q. Chứng minh FP = FQ. 3. Chứng minh rằng đường thẳng HK vuông góc với đường thẳng AM.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT An Giang
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT An Giang gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT An Giang : + Cho hàm số y = (√3 − 1)x + 1 có đồ thị là đường thẳng (d). 1. Vẽ đồ thị (d) của hàm số đã cho trên mặt phẳng tọa độ. 2. Đường thẳng (d0) song song với (d) và đi qua điểm có tọa độ (0;3). Đường thẳng (d) và (d0) cắt trục hoành lần lượt tại A; B, cắt trục tung lần lượt tại D; C. Tính diện tích tứ giác ABCD. + Trên đường tròn đường kính AD lấy hai điểm B và C khác phía với AD sao cho BAC = 60◦. Từ B kẻ BE vuông góc với AC (E ∈ AC). 1. Chứng minh rằng hai tam giác ABD và BEC đồng dạng. 2. Biết EC = 3cm. Tính độ dài dây BD. + Trên mỗi đỉnh của một đa giác có 12 cạnh người ta ghi một số, mỗi số trên một đỉnh là tổng của hai số ở hai đỉnh liền kề. Biết hai số ở hai đỉnh A5 và A9 là 10 và 9. Tìm số ở đỉnh A1.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Bình Định
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Định dành cho các thí sinh thi vào các lớp chuyên Toán; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Bình Định : + Tìm tất cả các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. + Cho tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O). Gọi M là điểm bất kì trên cung nhỏ BC. Chứng minh rằng MA > MB + MC. + Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn tâm O. Gọi D là trung điểm cạnh BC và E, F tương ứng là hình chiếu vuông góc của D lên AC và AB. Đường thẳng EF cắt các đường thẳng AO và BC theo thứ tự M và N. (a) Chứng minh tứ giác AMDN nội tiếp. (b) Gọi K là giao điểm của AB và ED, L là giao điểm của AC và FD, H là trung điểm của KL và I là tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh HI ⊥ EF.