Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2023 - 2024 sở GDĐT Quảng Nam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh THPT môn Toán 11 chuyên đợt 2 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi tỉnh Toán 11 chuyên đợt 2 năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho dãy số thực (un) xác định bởi 1 u với mọi n. Chứng minh dãy (un) có giới hạn hữu hạn và tính giới hạn đó. + Cho tam giác ABC nhọn (AB AC) và điểm D nằm trên đường trung tuyến AM kẻ từ đỉnh A của tam giác (D khác A). Gọi E là điểm trên đoạn MC (E khác M, C). Gọi H, K lần lượt là hình chiếu của D lên AB và AC. Gọi (C1) và (C2) lần lượt là hai đường tròn ngoại tiếp tam giác BHE và CKE, (C1) cắt (C2) tại điểm thứ hai là L. Gọi d là đường thẳng kẻ từ B vuông góc với BC, d cắt (C1) tại điểm thứ hai là I, N là giao điểm thứ hai của IL và (C2). a) Chứng minh BI song song NC. b) Gọi P là giao điểm của IL và BC. Chứng minh tứ giác ALMP nội tiếp đường tròn. + Cho đoạn thẳng AB được chia thành bốn phần bằng nhau bởi ba điểm M, N, P (hình vẽ). Ta đánh dấu 2024 điểm phân biệt trong đoạn AB bằng cách chia đều trong mỗi đoạn AM, MN, NP, PB có 506 điểm, thỏa mãn điều kiện với một điểm bất kỳ thuộc đoạn AM thì tồn tại một điểm thuộc đoạn MN đối xứng với nhau qua M; tương tự với một điểm bất kỳ thuộc đoạn PB thì tồn tại một điểm thuộc đoạn NP đối xứng với nhau qua P. Sau đó ta thực hiện tô màu đỏ cho 1012 điểm tùy ý và 1012 điểm còn lại màu đen. Chứng minh tổng các khoảng cách từ A đến các điểm màu đỏ bằng tổng các khoảng cách từ B đến các điểm màu đen.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình (Vòng 1)
Nội dung Đề thi chọn HSG tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Quảng Bình (Vòng 1) Bản PDF Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ thi chọn học sinh giỏi tỉnh môn Toán lớp 11 năm học 2020 – 2021 và chọn đội dự tuyển dự thi chọn HSG Quốc gia môn Toán năm học 2021 – 2022 vòng 1. Đề thi chọn HSG tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Quảng Bình (Vòng 1) gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi chọn HSG lớp 11 môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm 2020 2021 sở GD ĐT Vĩnh Phúc Bản PDF Thứ Ba ngày 06 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 THPT năm học 2020 – 2021. Đề thi chọn HSG Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút.
Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 11 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh; đề thi được biên soạn theo dạng đề tự luận, đề gồm 02 trang với 07 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Bắc Ninh : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I(1;4), đỉnh A nằm trên đường thẳng có phương trình 2x + y – 1 = 0, đỉnh C nằm trên đường thẳng có phương trình x – y + 2 = 0. Tìm tọa độ các đỉnh của hình vuông đã cho. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tất cả các cạnh bên đều bằng a. Gọi điểm M thuộc cạnh SD sao cho SD = 3SM, điểm G là trọng tâm tam giác BCD. a) Chứng minh rằng MG song song với mp(SBC). b) Gọi (α) là mặt phẳng chứa MG và song với CD. Xác định và tính diện tích thiết diện của hình chóp với mp (α). c) Xác định điểm P thuộc MA và điểm Q thuộc BD sao cho PQ song song với SC. Tính PQ theo a. + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau và ba chữ số chẵn khác nhau, mà mỗi chữ số chẵn có mặt đúng hai lần. File WORD (dành cho quý thầy, cô):
Đề thi HSG lớp 11 môn Toán lần 2 năm 2020 2021 trường THPT Đồng Đậu Vĩnh Phúc
Nội dung Đề thi HSG lớp 11 môn Toán lần 2 năm 2020 2021 trường THPT Đồng Đậu Vĩnh Phúc Bản PDF Đề thi HSG Toán lớp 11 lần 2 năm học 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc gồm 02 trang với 10 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán lớp 11 lần 2 năm 2020 – 2021 trường THPT Đồng Đậu – Vĩnh Phúc : + Một thợ thủ công muốn vẽ trang trí trên một hình vuông kích thước 4m x 4m, bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu và tô kín màu lên hai tam giác đối diện (như hình vẽ). Quá trình vẽ và tô theo qui luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ thủ công đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn để sơn 1m2 là 50.000 đồng. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD, có đỉnh A(-3;1), đỉnh C nằm trên đường thẳng d: x – 2y – 5 = 0. Trên tia đối của tia CD lấy điểm E sao cho CE = CD, biết N(6;-2) là hình chiếu vuông góc của D lên đường thẳng BE. Xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD. + Cho hình hộp ABCD.A’B’C’D’. Trên các đoạn thẳng AD’ và C’D lần lượt lấy hai điểm M, N sao cho đường thẳng MN song song với đường thẳng nối tâm của hình bình hành ABB’A’ và trung điểm của cạnh BC. Tính tỷ số MN/A’C. File WORD (dành cho quý thầy, cô):