Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tuyển sinh năm 2020 2021 trường Phan Huy Chú Hà Nội

Nội dung Đề thi thử Toán tuyển sinh năm 2020 2021 trường Phan Huy Chú Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán tuyển sinh năm 2020-2021 trường Phan Huy Chú Hà Nội Đề thi thử Toán tuyển sinh năm 2020-2021 trường Phan Huy Chú Hà Nội Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử Toán tuyển sinh lớp 10 THPT năm học 2020-2021 trường THPT Phan Huy Chú, quận Đống Đa, thành phố Hà Nội. Đề thi được biên soạn theo dạng tự luận với 01 trang và 05 bài toán, thời gian làm bài thi là 90 phút. Dưới đây là một số câu hỏi trong đề thi: Bài toán 1: Khoảng cách giữa hai tỉnh A và B là 120 km. Hai người đi xe máy cùng khởi hành một lúc đi từ A đến B với vận tốc bằng nhau. Sau khi đi được 1 giờ thì xe của người thứ nhất bị hỏng nên phải dừng lại sửa xe 14 phút, còn người thứ hai tiếp tục đi với vận tốc ban đầu. Sau khi sửa xe xong, người thứ nhất đi với vận tốc nhanh hơn trước 10 km/h nên đã đến B cùng lúc với người thứ hai. Hãy tính vận tốc hai người đi lúc đầu. Bài toán 2: Cho tam giác ABC có ba góc nhọn. Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác. Gọi P là giao điểm của EF và AD. Hãy chứng minh rằng A, F, D, C cùng thuộc một đường tròn và PF.DE = PE.DF. Cũng chứng minh rằng FDE = FIE và đường thẳng KH song song với đường thẳng AD. Bài toán 3: Cho biểu thức P = a^2.b + b^2.c + c^2.a với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P. Với những yêu cầu phức tạp trên, đề thi Toán tuyển sinh năm 2020-2021 trường Phan Huy Chú Hà Nội hứa hẹn sẽ mang đến cho các em học sinh những thách thức đầy hấp dẫn và cơ hội để thể hiện tài năng toán học của mình.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Lâm Đồng
Thứ Ba ngày 14 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng gồm có 01 trang với 12 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lâm Đồng : + Cho đường tròn (O;R) cố định đi qua hai điểm B và C cố định (BC khác đường kính). Điểm M di chuyển trên đường tròn (O) (M không trùng với B và C), G là trọng tâm của ∆MBC. Chứng minh rằng điểm G chuyển động trên một đường tròn cố định. [ads] + Một bể nước dạng hình trụ có chiều cao là 25dm, bán kính đường tròn đáy là 8dm. Hỏi khi đầy thì bể chứa bao nhiêu lít nước? (bỏ qua độ dày của thành bể; π ≈ 3,14). + Một vườn hoa hình chữ nhật có diện tích 91m2 và chiều dài lớn hơn chiều rộng 6m. Tính chu vi của vườn hoa.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Tiền Giang
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Tiền Giang tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Tiền Giang : + Một người đi xe máy từ địa điểm A đến địa điểm B hết 1 giờ 30 phút, rồi tiếp tục đi từ địa điểm B đến địa điểm C hết 2 giờ. Tìm vận tốc của người đi xe máy trên mỗi quãng đường AB và BC, biết quãng đường xe máy đã đi từ A đến C dài 150 km và vận tốc xe máy đi trên quãng đường AB nhỏ hơn vận tốc đi trên quãng đường BC là 5 km/h. + Cho tam giác ABC vuông tại A, biết AB = 6 cm và BC = 10 cm. Tính giá trị của biểu thức P = 5sinB + 3. [ads] + Cho hai đường tròn (O;R) và (O’;r) tiếp xúc ngoài tại A, với R > r. Kẻ BC là tiếp tuyến chung ngoài của hai đường tròn với B thuộc (O), C thuộc (O’), tiếp tuyến chung trong tại A của hai đường tròn cắt BC tại M. a) Chứng minh bốn điểm O, B, M, A cùng thuộc một đường tròn. b) Gọi E là giao điểm của OM và AB, F là giao điểm của O’M và AC. Chứng minh tứ giác AEMF là hình chữ nhật. c) Chứng minh rằng tam giác MEF đồng dạng với tam giác MO’O. d) Cho biết R = 16 cm và r = 9 cm. Tính diện tích tứ giác OBCO’.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nam
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nam : + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O;R). Hai đường cao BE, CF của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC tại D và cắt đường tròn (O;R) tại điểm thứ hai là M. 1) Chứng minh tứ giác AEHF nội tiếp. 2) Chứng minh BC là tia phân giác của EBM. 3) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Chứng minh IE là tiếp tuyến của đường tròn ngoại tiếp tam giác BCE. 4) Khi hai điểm B, C cố định và điểm A di động trên đường tròn (O;R) nhưng vẫn thỏa mãn điều kiện tam giác ABC có ba góc nhọn. Chứng minh OA vuông góc EF. Xác định vị trí của điểm A để tổng DE + EF + FD đạt giá trị lớn nhất. [ads] + Cho biểu thức B. Rút gọn biểu thức B. Tìm tất cả các giá trị của x để biểu thức B nhận giá trị âm. + Cho ba số dương a, b, c thỏa mãn abc = 1. Chứng minh rằng.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thái Bình
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Bình tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thái Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thái Bình : Qua điểm M nằm bên ngoài (O;R) kẻ hai tiếp tuyến MA, MB (A, B là tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D). a) Chứng minh tứ giác MAOB nội tiếp và MO ⊥ AB. b) Chứng minh MA.AD = MD.AC. c) Gọi I là trung điểm của dây cung CD và E là giao điểm của hai đường thẳng AB và OI. Tính độ dài đoạn thẳng OE theo R khi OI = R/3. d) Qua tâm O kẻ đường thẳng vuông góc với OM cắt các đường thẳng MA, MB lần lượt tại P và Q. Tìm vị trí của điểm M để diện tích tam giác MPQ đạt giá trị nhỏ nhất.