Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 1 năm 2019 - 2020 trường Thạch Thành 3 - Thanh Hóa

Ngày … tháng 11 năm 2019, trường THPT Thạch Thành 3 – Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất đối với học sinh khối 12 của nhà trường trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát Toán 12 lần 1 năm học 2019 – 2020 trường THPT Thạch Thành 3 – Thanh Hóa có mã đề 001, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để làm bài KSCL Toán 12. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa : + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Gọi (H1) là phần đa diện chứa điểm S có thể tích V1, (H2) là phần đa diện còn lại có thể tích V2. Tính tỉ số thể tích V1/V2. + Một hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi kích thước như nhau, n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong ba viên bi lấy được có đủ 3 màu là 9/28. Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh. [ads] + Cho phương trình: (cos4x – cos2x + 2(sinx)^2)/(cosx + sinx) = 0. Tính diện tích đa giác có các đỉnh là các điểm biểu diễn các nghiệm của phương trình trên đường tròn lượng giác. + Một công ty muốn làm một đường ống dẫn dầu từ kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100 000 000 đồng và dưới nước là 260 000 000 đồng. + Người ta muốn xây một cái bể hình hộp đứng có thể tích V = 18 (m3), biết đáy bể là hình chữ nhật có chiều dài gấp 3 lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL cuối kỳ 1 Toán 12 năm học 2018 - 2019 trường THPT Đoàn Thượng - Hải Dương
Đề KSCL cuối kỳ 1 Toán 12 năm học 2018 – 2019 trường THPT Đoàn Thượng – Hải Dương mã đề 132 được biên soạn nhằm đánh giá kiến thức môn Toán thường xuyên đối với học sinh khối 12 trong quá trình chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán, kỳ thi được diễn ra vào giai đoạn cuối học kỳ 1, đề thi gồm 6 trang được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong vòng 90 phút, ngoài các câu hỏi thuộc chương trình Toán 12 thì đề còn có một số ít các bài toán trong chương trình Toán 10 và Toán 11, đề thi có đáp án toàn bộ các mã đề. Trích dẫn đề KSCL cuối kỳ 1 Toán 12 năm học 2018 – 2019 trường THPT Đoàn Thượng – Hải Dương : + Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhuận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000. Hỏi cơ sở sản xuất phải bán với giá mới là bao nhiêu để đạt lợi nhuận lớn nhất. [ads] + Biết thể tích khí CO2 năm 1998 là V (m3). 10 năm tiếp theo, mỗi năm thể tích khí CO2 tăng a%, 10 năm tiếp theo nữa, mỗi năm thể tích khí CO2 tăng n%. Thể tích khí CO2 năm 2016 là? + Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ tướng. Người giành chiến thắng là người đầu tiên thắng được năm ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván, tính xác suất để người chơi thứ nhất giành chiến thắng.
Đề KSCL Toán 12 ôn thi THPT Quốc gia năm 2018 - 2019 trường chuyên Vĩnh Phúc lần 2
Đề KSCL Toán 12 ôn thi THPT Quốc gia năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 2 mã đề 234 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan thuộc chương trình Toán 10, Toán 11 và Toán 12 mà các em đã được học – nhằm đáp ứng xu hướng ra đề môn Toán cho kỳ thi THPT Quốc gia năm nay, đó là gồm nội dung toán cả 3 khối 10, 11 và 12, thời gian làm bài 90 phút (không tính thời gian giám thị phát đề), đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL Toán 12 ôn thi THPT Quốc gia năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 2 : + Một người mỗi tháng đều đặn gửi vào ngân hàng một khoản tiền T theo hình thức lãi kép với lãi suất 0,6% mỗi tháng. Biết sau 15 tháng, người đó có số tiền là 10 triệu đồng. Hỏi số tiền T gần với số tiền nào nhất trong các số sau. [ads] + Gọi M, N là hai điểm di động trên đồ thị (C) của hàm số y = -x^3 + 3x^2 – x + 4 sao cho tiếp tuyến của (C) tại M và N luôn song song với nhau. Hỏi khi M, N thay đổi, đường thẳng MN luôn đi qua nào trong các điểm dưới đây? + Cho hình chóp tứ giác đều có góc giữa mặt bên và mặt đáy bằng 60 độ. Biết rằng mặt cầu ngoại tiếp hình chóp đó có bán kính R = a√3. Tính độ dài cạnh đáy của hình chóp tứ giác đều nói trên.
Đề KSCL Toán 12 lần 1 năm 2018 - 2019 trường THPT Đồng Đậu - Vĩnh Phúc
Đề KSCL Toán 12 lần 1 năm 2018 – 2019 trường THPT Đồng Đậu – Vĩnh Phúc mã đề 001 được biên soạn theo hình thức trắc nghiệm khách quan, đề gồm 6 trang với 50 câu hỏi và bài toán, yêu cầu học sinh hoàn thành bài làm trong thời gian 90 phút, đề nhằm kiểm tra năng lực môn Toán của học sinh khối 12 giai đoạn giữa học kỳ 1 để làm cơ sở đánh giá, xếp loại, tuyển chọn các em học sinh giỏi Toán 12, đồng thời cũng là một đợt thi thử THPT Quốc gia môn Toán, vì vậy, đề có những câu hỏi và bài toán thuộc kiến thức môn Toán 10, 11, đề thi có đáp án và lời giải chi tiết. Ma trận đề KSCL Toán 12 lần 1 năm 2018 – 2019 trường THPT Đồng Đậu – Vĩnh Phúc : + Hàm số. + Phương trình, bất phương trình. + Phương pháp tọa độ trong mặt phẳng. + Phương trình lượng giác. + Tổ hợp xác suất. + Phép biến hình. + Quan hệ song song. + Quan hệ vuông góc. + Đơn điệu của hàm số. + Cực trị của hàm số. + Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. + Tiệm cận. + Đồ thị hàm số. + Khối đa diện, khối đa diện đều. + Thể tích khối đa diện.
Đề KSCL đầu năm 2018 - 2019 môn Toán 12 trường THPT Lê Văn Thịnh - Bắc Ninh
Đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh mã đề 132 được biên soạn theo hình thức tương tự như đề thi THPT Quốc gia với 50 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 90 phút, kỳ thi được tổ chức vào ngày 16/09/2018. Nội dung kiểm tra hướng đến gồm: nội dung chương trình Toán 11, chủ đề khảo sát và đồ thị hàm số, khối đa diện và thể tích. Đề thi có đáp án và lời giải chi tiết. Trích dẫn đề KSCL đầu năm 2018 – 2019 môn Toán 12 trường THPT Lê Văn Thịnh – Bắc Ninh : + Cho hàm số y = f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau: (1) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị lớn nhất của f(x) trên [a;b]. (2) Nếu hàm số y = f(x) đạt cực đại tại điểm x0 ∈ (a;b) thì f(x0) là giá trị nhỏ nhất của f(x) trên [a;b]. (3) Nếu hàm số f(x) đạt cực đại tại điểm x0 và đạt cực tiểu tại điểm x1 (x0, x1 ∈ (a;b)) thì ta luôn có f(x0) > f(x1). Số khẳng định đúng là? [ads] + Cho hai đường thẳng cố định a và b chéo nhau. Gọi AB là đoạn vuông góc chung của a và b (A thuộc a, B thuộc b). Trên a lấy điểm M (khác A), trên b lấy điểm N (khác B ) sao cho AM = x, BN = y, x + y = 8. Biết AB = 6, góc giữa hai đường thẳng a và b bằng 60 độ. Khi thể tích khối tứ diện ABNM đạt giá trị lớn nhất hãy tính độ dài đoạn MN (trong trường hợp MN = 8). + Cho hàm số y = (x + 1)/(2 – x). Khẳng định nào sau đây đúng? A. Hàm số đã cho đồng biến trên từng khoảng xác định của nó. B. Hàm số đã cho đồng biến trên khoảng (-∞;2) ∪ (2;+∞). C. Hàm số đã cho đồng biến trên R. D. Hàm số đã cho nghịch biến trên từng khoảng xác định của nó.