Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Hoàn Kiếm Hà Nội

Nội dung Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023-2024 phòng GD ĐT Hoàn Kiếm Hà Nội Đề chọn học sinh giỏi lớp 9 môn Toán năm 2023-2024 phòng GD ĐT Hoàn Kiếm Hà Nội Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2023-2024 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Năm ngày 26 tháng 10 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán lớp 9 năm 2023-2024 phòng GD&ĐT Hoàn Kiếm - Hà Nội: Cho a, b là các số nguyên thỏa mãn a^2 + 2b + 3 và b^2 + 2a + 3 đều chia hết cho 5. Chứng minh a + b + 2023 chia hết cho 5. Cho tam giác ABC nhọn, cân tại A, đường cao AM. Đường thẳng qua B và vuông góc với AB, cắt tia AM tại D. Lấy điểm F bất kì nằm giữa hai điểm B và M. Gọi E là hình chiếu vuông góc của A trên đường thẳng DF. Chứng minh DE·DF = DM·DA và DBF = DEB. Gọi O là trung điểm của AD. Đường thẳng qua O và vuông góc với EC, cắt EA tại S. Chứng minh tam giác EBF đồng dạng với tam giác SOE. Gọi K là trung điểm của EF. Chứng minh CK vuông góc với SD. Cho bảng ô vuông n x n. Cần điền vào mỗi ô vuông 1 × 1 của bảng một số nguyên thỏa mãn các điều kiện sau: Tổng các số trong mỗi mảng ô vuông 3 × 3 luôn dương. Tổng các số trong mỗi mảng ô vuông 4 × 4 luôn âm. Chỉ ra một cách điền số thỏa mãn với n = 5. Tìm điều kiện của n để tồn tại một cách điền số thỏa mãn.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử HSG Toán 9 năm 2022 - 2023 trường THCS Lai Vu - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Lai Vu, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi thử HSG Toán 9 năm 2022 – 2023 trường THCS Lai Vu – Hải Dương : + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm AH, BD cắt AC tại E. Kẻ HK song song với AE (K thuộc BE) a) Chứng minh cos2B = EA/EC. b) Gọi M là điểm đối xứng của A qua B, N thuộc tia đối của tia HA sao cho HN = 2HA. Gọi P là trung điểm của HN. Chứng minh MN vuông góc NC. + Cho tam giác ABC vuông tại A (AB < AC), các đường phân giác trong và ngoài tại đỉnh A của tam giác cắt BC lần lượt tại M, N. Chứng minh 1 1 1 AM AN AB. + Cho các số nguyên dương a, b thỏa mãn: (a – 2021)(b + 2021) = 4 và ba số thực dương x; y; z sao cho xyz = 1. Chứng minh rằng?
Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.