Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Đắk Lắk

Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Đắk Lắk Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD ĐT Đắk Lắk Đề tuyển sinh vào môn Toán năm 2021-2022 sở GD ĐT Đắk Lắk Đề tuyển sinh vào lớp 10 môn Toán năm học 2021 - 2022 của sở GD&ĐT Đắk Lắk được Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh. Đề thi bao gồm đáp án và lời giải chi tiết do thầy giáo Nguyễn Dương Hải - giáo viên Toán trường THCS Nguyễn Chí Thanh, Buôn Ma Thuột, Đắk Lắk trình bày. Một trong những câu hỏi trong đề tuyển sinh là: Trên nửa đường tròn O đường kính AB với AB = 2022, lấy điểm C (C khác A và B), từ C kẻ CH vuông góc với AB (H thuộc AB). Gọi D là điểm bất kỳ trên đoạn CH (D khác C và H), đường thẳng AD cắt nửa đường tròn tại điểm thứ hai là E. Hãy thực hiện các yêu cầu sau: 1) Chứng minh tứ giác BHDE là tứ giác nội tiếp. 2) Chứng minh AD*EC = CD*AC. 3) Chứng minh 2*AD*AE = BH*BA = 2022. 4) Xác định vị trí của điểm C sao cho chu vi tam giác COH đạt giá trị lớn nhất khi điểm C di chuyển trên nửa đường tròn (C khác A, B và điểm chính giữa cung AB). Ngoài ra, đề cũng đưa ra các bài toán khác trong mặt phẳng tọa độ Oxy và Parabol như: phương trình đường thẳng đi qua điểm A(1,2) và song song với đường thẳng y = x/2 - 1, bài toán về Parabol 2y = x^2 và đường thẳng d y = mx + m^2 - 1/3. Hãy tìm giá trị nhỏ nhất của M(x1, x2) khi giao điểm của đường thẳng d và Parabol P là (x1, x2).

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Dương
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Dương gồm 4 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D, E, F lần lượt là tiếp điểm của (O) với các cạnh AB, AC, BC, I là giao điểm của BO với EF ,M là điểm di động trên đoạn CE [ads] a. Tính số đo góc BIF b. Gọi H là giao điểm của BM và EF. Chứng minh rằng nếu AM=AB thì tứ giác ABHI là tứ giác nội tiếp c. Gọi N là giao điểm của BM với cung nhỏ EF của (O), P và Q lần lượt là hình chiếu vuông góc của N lên các đường thẳng DE, DF. Xác định vị trí của điểm M để độ dài PQ là lớn nhất
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán trường chuyên Lê Quý Đôn - Bình Định (Chuyên Toán)
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán trường chuyên Lê Quý Đôn – Bình Định (Chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (T) tâm O đường kı́nh AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuôc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD [ads] a) Chứng minh tứ giác AOHP nội tiếp được đường tròn b) Kẻ DI song song với PO, điểm I thuôc AB, chứng minh: góc PDI = góc BAH c) Chứng minh đẳng thức PA^2 = PC.PD d) BC cắt OP tai J, chứng minh AJ song song với DB
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Hùng Vương - Phú Thọ (Chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Toán) gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Tìm các số nguyên m sao cho m^2 + 12 là số chính phương. + Chứng minh rằng trong 11 số nguyên tố phân biệt, lớn hơn 2 bất kỳ luôn chọn được hai số gọi là a, b sao cho a^2 – b^2 chia hết cho 60. + Cho tam giác ABC cân với góc BAC = 120 độ, nội tiếp đường tròn (O). Gọi D là giao điểm của đường thẳng AC với tiếp tuyến của (O) tại B; E là giao điểm của đường thẳng BO với đường tròn (O) ( E khác B); F, I lần lượt là giao điểm của DO với AB, BC; M, N lần lượt là trung điểm của AB, BC [ads] a) Chứng minh rằng tứ giác ADBN nội tiếp b) Chứng minh rằng F, N, E thẳng hàng c) Chứng minh rằng các đường thẳng MI, BO, FN đồng quy
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Hùng Vương - Phú Thọ (Chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Tin) gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho đường tròn (O; R) có đường kính AB, M là điểm thuộc đoạn AB (M không trùng với A và B). Qua M vẽ đường thẳng (d) vuông góc với AB. Trên (d) lấy điểm C nằm ngoài (O). Vẽ các tiếp tuyến CE, CF với (O) ( E, F là tiếp điểm). Gọi H, K lần lượt là giao điểm của CA, CB với (O) (H khác A, K khác B), I là giao điểm của AK và BH [ads] a) Chứng minh các điểm C, M, E, F, O cùng thuộc một đường tròn b) Chứng minh ba điểm E, F, I thẳng hàng c) Xác định vị trí điểm C để tâm đường tròn ngoại tiếp tam giác ABC nằm trên đường thẳng EF