Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 4 năm 2020 2021 trường Nguyễn Du Hà Nội

Nội dung Đề thi thử Toán vào lần 4 năm 2020 2021 trường Nguyễn Du Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 4 năm học 2020 – 2021 trường Nguyễn Du Hà Nội Đề thi thử Toán vào lớp 10 lần 4 năm học 2020 – 2021 trường Nguyễn Du Hà Nội Đề thi thử Toán vào lớp 10 lần 4 năm học 2020 – 2021 trường THCS Nguyễn Du, quận Nam Từ Liêm, thành phố Hà Nội có tổng cộng 5 bài toán tự luận trên 01 trang giấy. Thời gian làm bài là 120 phút, kỳ thi diễn ra vào thứ Sáu ngày 28 tháng 04 năm 2021. Đề thi mang tính chất thử nghiệm, giúp học sinh ôn tập và làm quen với cấu trúc đề thi chính thức sắp tới. Học sinh có cơ hội tự kiểm tra kiến thức và kỹ năng giải quyết các bài toán Toán cơ bản, nâng cao khả năng ra quyết định và logic trong quá trình giải bài toán. Để đạt kết quả tốt, học sinh cần rèn luyện thường xuyên, ôn tập kỹ càng các kiến thức và phương pháp giải bài toán. Kì thi thử Toán là cơ hội để học sinh tự tin và chuẩn bị tốt cho kì thi chính thức vào lớp 10.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào 10 đợt 1 năm 2023 - 2024 trường THPT Sông Công - Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT đợt 1 năm học 2023 – 2024 trường THPT Sông Công, tỉnh Thái Nguyên; đề thi gồm 01 trang với 10 bài toán hình thức tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 đợt 1 năm 2023 – 2024 trường THPT Sông Công – Thái Nguyên : + Cho hình thang vuông ABCD có đường cao AD cm 2 AB cm 2 và CD cm 4. Tính diện tích hình thang và bán kính đường tròn ngoại tiếp tam giác ABC. + Cho ba điểm A M B phân biệt, thẳng hàng và M nằm giữa A B. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB dựng hai tam giác đều AMC và BMD. Gọi P là giao điểm của AD và BC. Chứng minh: a) Tứ giác AMPC nội tiếp. b) CP CB DP DA AB. + Cho ABCD là một tứ giác nội tiếp có AC BC AD cm 5. Hai đường chéo AC BD cắt nhau tại E sao cho BE cm 12 và DE cm 3. Đường trung trực của đoạn thẳng CD cắt đoạn thẳng BE tại I. a) Chứng minh IC AD. b) Tính BCD.
Đề thi thử Toán vào lớp 10 lần 2 năm 2023 - 2024 trường THPT Sơn Tây - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán kỳ thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 trường THPT Sơn Tây, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 lần 2 năm 2023 – 2024 trường THPT Sơn Tây – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Tuần trước, Khuê mua 1 kg táo và 1 kg cam ở siêu thị hết 130 nghìn đồng. Hôm nay, Khuê quay lại siêu thị mua cùng lượng hoa quả như vậy nhưng phải trả 154 nghìn đồng. Người bán hàng giải thích giá cam đã tăng 15% và giá táo đã tăng 20% so với tuần trước. Hỏi giá tiền mỗi kg táo và cam ngày hôm nay là bao nhiêu nghìn đồng. + Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x2 và đường thẳng d: y = 2x + |m| + 1 (m là tham số). a) Chứng minh đường thẳng d luôn cắt (P) tại hai điểm phân biệt. b) Tìm m để đường thẳng d cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 (với x1 < x2) thỏa mãn |x1x2| + |x2| – |x1| = 8. + Cho đường tròn tâm (O) và điểm M nằm ngoài đường tròn (O). Qua điểm M kẻ các tiếp tuyến MA, MB tới đường tròn (O) với A, B là hai tiếp điểm. Từ điểm A kẻ đường thẳng song song với MB cắt đường tròn (O) tại điểm C (C khác A), đường thẳng MC cắt đường tròn (O) tại điểm D (D khác C). Gọi H là giao điểm của AB và MO. a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh MA2 = MD.MC và BDM = ADB. c) Gọi F là điểm đối xứng với D qua MO. Chứng minh C, H, F thẳng hàng.
Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Quốc Oai – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội sản xuất lập kế hoạch làm chung 7000 sản phẩm trong một thời gian nhất định. Do đã hết ảnh hưởng của dịch COVID nên năng suất đội I tăng 15%, đội II tăng 20%. Vì thế, trong thời gian quy định, cả hai đội đã làm được 8200 sản phẩm. Hỏi theo kế hoạch mỗi đội phải làm bao nhiêu sản phẩm? + Người ta làm một chiếc bồn chứa nguyên liệu có phần trên dạng một hình trụ rỗng, phần dưới dạng hình nón với mặt cắt và các kích thước như hình vẽ. Hỏi bồn chứa được bao nhiêu mét khối (coi bề dày của thành không đáng kể. Lấy π ≈ 3,14 và làm tròn đến chữ số thập phân thứ hai). + Từ điểm M nằm ngoài (O;R), kẻ hai tiếp tuyến MA, MB tới đường tròn (A và B là các tiếp điểm). Gọi N là trung điểm của MA; BN cắt (O) tại C. a/ Chứng minh: Tứ giác MAOB nội tiếp và NA2 = NB.NC. b/ Tia MC cắt (O) tại điểm thứ hai D. Chứng minh BD // AM. c/ Gọi I là trung điểm của CD; K là giao điểm của AB và CD. Chứng minh: MC.MD = MI.MK.
Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Nam Đàn – Nghệ An : + Hai bạn Thành và Công hẹn nhau cùng xuất phát từ cổng làng để đến một địa điểm thi THPT với chiều dài 12 km. Bạn Thành đi xe đạp điện, bạn Công đi xe máy điện với vận tốc lớn hơn vận tốc của bạn Thành là 6 km/h. Tính vận tốc của mỗi bạn biết bạn Công đến địa điểm thi THPT trước bạn thành 6 phút. + Tính diện tích tấm ni lông cần thiết để phủ kín một chiếc nón có đường kính đáy bằng 45 cm và độ dài đường sinh là 30 cm (lấy pi = 3,14). + Cho đường tròn tâm O, đường kính AB. Gọi C điểm chính giữa cung AB. Điểm D di động trên cung nhỏ AC (D khác A và C). Trên đoạn thẳng BD lấy điểm E sao cho BE = AD, vẽ EH vuông góc với AB (H thuộc AB). a) Chứng minh Tứ giác ADEH nội tiếp một đường tròn. b) Chứng minh CDE vuông cân. c) Chứng minh đường thẳng vuông góc với BD tại E luôn đi qua một điểm cố định khi D di chuyển trên cung nhỏ AC.