Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên Chúng tôi xin giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022-2023 của sở Giáo dục và Đào tạo UBND tỉnh Thái Nguyên. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em tự học và ôn tập hiệu quả. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 sở GD&ĐT Thái Nguyên: 1. Cho tập con A của tập số tự nhiên, biết A có phần tử nhỏ nhất là 1 và lớn nhất là 100. Mỗi phần tử x thuộc A, x*1 luôn biểu diễn được dưới dạng x = a + b trong đó a, b thuộc A và a có thể bằng b. Hãy tìm tập A có số phần tử nhỏ nhất và giải thích cách tìm? 2. Trong tam giác ABC với AB AC và đường tròn nội tiếp O có trực tâm H. Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C. Gọi I là trung điểm của BC, P là giao điểm của EF và BC. Đường thẳng DF cắt đường tròn ngoại tiếp tam giác HEF tại K. a) Chứng minh PB = PC = PE = PF và KE song song với BC; b) Đường thẳng PH cắt đường tròn ngoại tiếp tam giác HEF tại Q. Chứng minh tứ giác BIQF nội tiếp. 3. Được cho ba điểm A, B, C phân biệt trên cùng một đường thẳng. Kẻ đường thẳng d vuông góc với AC qua B, D di chuyển trên đường thẳng d sao cho D khác B. Đường tròn ngoại tiếp tam giác ACD cắt d tại E. Gọi P, Q là hình chiếu vuông góc của B lần lượt trên AD và AE. Gọi R là giao điểm của BQ và CD, S là giao điểm của BP và CE. Chứng minh: a) Tứ giác PQSR nội tiếp; b) Tâm đường tròn ngoại tiếp tứ giác PQSR luôn thuộc một đường thẳng cố định khi điểm D di chuyển trên đường thẳng d.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Đồng Nai
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai : + Trong mặt phẳng cho 1889 điểm thỏa mãn với 3 điểm bất kỳ tạo thành 3 đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh trong các điểm đã cho tồn tại 237 điểm cùng nằm bên trong hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1/2. + Có bao nhiêu cách bỏ 5 cây bút khác màu gồm xanh, đen, tím, đỏ, hồng vào 5 hộp đựng bút khác màu gồm xanh, đen, tím, đỏ, hồng sao cho mỗi hộp chỉ có một bút và màu bút khác với màu hộp? + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, biết AB < AC. Gọi L là giao điểm của đường thẳng BC với tiếp tuyến tại A của (O). Gọi K là giao điểm của hai đường thẳng BC và EF. Gọi M, N lần lượt là trung điểm của hai đoạn thẳng BC, EF. 1. Chứng minh tứ giác ALMO nội tiếp đường tròn. Gọi D là giao điểm của (O) với đường tròn ngoại tiếp tứ giác ALMO , D khác A . Chứng minh LD là tiếp tuyến của (O). 2. Chứng minh MH vuông góc với AK, suy ra KH vuông góc với AM. 3. Chứng minh rằng ba điểm A, N, D thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Cao Bằng
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Trong mặt phẳng tọa độ Oxy, cho parabol (P) : y = x2 và đường thẳng (d) : y = 2 (m − 1) x − m2 + 3. Tìm m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho: y1 + y2 − x1x2 − 33 = 0. + Tìm tất cả các số dương x để biểu thức Q = 3x/(x2 − x + 1) nhận giá trị là những số nguyên. + Tìm tất cả các số tự nhiên a có bốn chữ số thỏa mãn. Khi chia a cho 80 ta được số dư là 20 và khi chia a cho 41 ta được số dư là 11.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Long An
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Long An gồm có 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút; kỳ thi được diễn ra vào ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Long An : + Cho phương trình m (m2x − m − 2) = 8x + 4 với m là tham số và m khác 2. Tìm tất cả giá trị của m để phương trình trên có nghiệm nhỏ hơn −2. + Cho đa giác đều 24 cạnh A1A2 . . . .A23A24. Có tất cả bao nhiêu tam giác vuông nhưng không phải là tam giác vuông cân được tạo thành từ các đỉnh của đa giác trên? + Cho ∆ABC nhọn có AB < AC. Gọi O, H, G lần lượt là tâm đường tròn ngoại tiếp, trực tâm, trọng tâm của tam giác trên. Gọi E là điểm tùy sao cho luôn tạo thành ∆EHG và ∆EOG. Chứng minh: tỉ số diện tích ∆EHGvà diện tích ∆EOGkhông phụ thuộc vào vị trí của điểm E.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT Lạng Sơn
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề), đề thi được sử dụng cho các thí sinh thi vào các lớp chuyên Toán. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Cho a, b là các số nguyên dương thỏa mãn a − 1 và b + 2021 đều chia hết cho 6. Chứng minh 4a + a + b chia hết cho 6. + Tìm tất cả các số nguyên tố p sao cho p là ước của 5p − 2p. Tìm tất cả các số nguyên tố p và q sao cho (5p − 2p) (5p − 2p)pq là một số nguyên. + Bên trong hình chữ nhật có chiều dài 101 cm và chiều rộng 20 cm cho 10101 điểm. Vẽ 10101 hình tròn có tâm lần lượt là 10101 điểm đã cho và bán kính đều bằng √2 cm. Hỏi có hay không 6 điểm thuộc vào phần chung của 6 hình tròn nhận chính 6 điểm ấy làm tâm? Tại sao?