Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 Toán 11 năm 2023 - 2024 trường THPT Nhữ Văn Lan - Hải Phòng

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 2 môn Toán 11 năm học 2023 – 2024 trường THPT Nhữ Văn Lan, thành phố Hải Phòng. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kì 2 Toán 11 năm 2023 – 2024 trường THPT Nhữ Văn Lan – Hải Phòng : + Một lớp học có 40 học sinh, trong đó có 18 học sinh tham gia môn bóng đá và 10 học sinh tham gia môn bóng chuyền, trong đó có 6 học sinh tham gia cả hai môn bóng đá và bóng chuyền. Thầy giáo chọn ngẫu nhiên một học sinh từ lớp học để làm nhiệm vụ đặc biệt, gọi A là biến cố: “Chọn được một học sinh tham gia môn bóng đá”, B là biến cố: “Chọn được một học sinh tham gia môn bóng chuyền”. Khi đó: Các mệnh đề sau đúng hay sai? + Một chất điểm chuyển động theo phương trình 2 3 st 10 9 trong đó s tính bằng mét, t tính bằng giây. Tính thời gian để vận tốc của chất điểm đạt giá trị lớn nhất (tính từ thời điểm ban đầu)? + Cho hình chóp S.ABCD có đáy là hình chữ nhật có AB AD 1 2. Tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách từ A đến mặt phẳng SBD (làm tròn đến hàng phần trăm)?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Nguyễn Công Trứ - TP HCM
Ngày … tháng 04 năm 2021, trường THPT Nguyễn Công Trứ, quận Gò Vấp, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán 11 giai đoạn cuối học kỳ 2 năm học 2020 – 2021. Đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang, đề được biên soạn theo dạng tự luận với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và ABCD là hình thang vuông tại A, B. Biết AB = BC = a, AD 2a SA a 2. Gọi K là trung điểm của AD. a) Chứng minh: BK (SAC), (SBC) (SAB). b) Chứng minh tam giác SCD vuông tại C. c) Xác định và tính góc giữa (SCD) và (ABCD). d) Tính khoảng cách từ điểm K đến (SCD). + Cho đồ thị hàm số 3 (C) y f (x) 2x 7x 1. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng (d): y = – x + 5. + Cho y 4sin x 3cosx 5 x . Chứng minh rằng: 0 y 10 với mọi giá trị của x.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Mạc Đĩnh Chi - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Mạc Đĩnh Chi, quận 6, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Nguyễn Thượng Hiền - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Nguyễn Thượng Hiền, quận Tân Bình, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Phan Đình Phùng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Phan Đình Phùng – Hà Nội; đề thi mã đề 123 gồm 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút; đề thi có đáp án và lời giải chi tiết mã đề 123, 246, 357, 479. Trích dẫn đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Phan Đình Phùng – Hà Nội : + Cho đường thẳng a không vuông góc với mặt phẳng (P). Khi đó, góc giữa đường thẳng a và mặt phẳng (P) là góc giữa? A. a và hình chiếu vuông góc của a lên (P). B. a và một đường thẳng bất kì cắt (P). C. a và đường vuông góc với (P). D. a và đường thẳng bất kì nằm trong (P). + Tìm mệnh đề sai trong các mệnh đề sau? A. Hình hộp là hình lăng trụ. B. Hình hộp chữ nhật là hình lăng trụ đứng. C. Có hình lăng trụ không phải là hình hộp. D. Hình lăng trụ là hình hộp. + Cho phương trình 4 2 2 5 10 x xx. Khẳng định nào sau đây là đúng? A. Phương trình đã cho không có nghiệm trong khoảng (−2;0). B. Phương trình đã cho không có nghiệm trong khoảng (−1;1). C. Phương trình đã cho chỉ có một nghiệm trong khoảng (−2;1). D. Phương trình đã cho có ít nhất một nghiệm trong khoảng (0;2).