Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán lần 4 năm 2022 2023 phòng GD ĐT Bình Xuyên Vĩnh Phúc

Nội dung Đề khảo sát lớp 9 môn Toán lần 4 năm 2022 2023 phòng GD ĐT Bình Xuyên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 lần 4 năm 2022 – 2023 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc Đề khảo sát Toán lớp 9 lần 4 năm 2022 – 2023 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề khảo sát chất lượng môn Toán lần 4 trong năm học 2022 – 2023 do Phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc tổ chức. Đề thi bao gồm 20% câu trắc nghiệm và 80% câu tự luận, thời gian làm bài là 120 phút, không tính thời gian giao đề. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đoạn từ đề khảo sát: Biểu thức 2024 2023 P x có nghĩa khi và chỉ khi? Một công nhân được giao làm 64 sản phẩm nhưng lại làm thêm 6 sản phẩm, từ đó vượt khỏi kế hoạch 2 sản phẩm mỗi ngày và hoàn thành sớm 1 ngày. Hỏi mỗi ngày công nhân làm được bao nhiêu sản phẩm? Trong hình vẽ gồm đường tròn (O), điểm A nằm bên ngoài đường tròn, AB, AC tiếp xúc với đường tròn tại B, C. Hai đường thẳng AD và AE đi qua A cắt đường tròn tại D, E (D nằm giữa A và E, tia AE nằm giữa AB và AO), H là trung điểm của DE, AI cắt BC tại I. Chứng minh rằng: a) Tứ giác ABOC nội tiếp đường tròn. b) HA là phân giác của góc BHC. c) AI/AD = AE. Hy vọng rằng bộ đề này sẽ giúp các em học sinh lớp 9 kiểm tra và củng cố kiến thức Toán một cách hiệu quả. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Nam Đàn – Nghệ An: + Cho a, b, c là các số không âm thỏa mãn: a + b + c = 1. Chứng minh. + Cho tam giác ABC nhọn có hai đường trung tuyến BM và CN vuông góc với nhau tại G. a) Tính tỉ số diện tích của tam giác AMN và tam giác ABC b) Chứng minh AB2 + AC2 = 5BC2 c) Chứng minh: 3(cot B + cot C) ≥ 2. + Cho 10 số nguyên dương 1; 2; 3; ….; 10. Sắp xếp 10 số đó một cách tùy ý thành một hàng. Cộng mỗi số với số thứ tự của nó trong hàng, ta được 10 tổng. Chứng minh rằng trong 10 tổng đó có ít nhất 2 tổng có chữ số tận cùng giống nhau.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Thanh Chương - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thanh Chương, tỉnh Nghệ An; kỳ thi được diễn ra vào thứ Năm ngày 27 tháng 10 năm 2022.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho p là số nguyên tố không nhỏ hơn 5, chứng minh: p2 – 1 chia hết cho 24. Chứng minh rằng không tồn tại số nguyên n để n2 + 26 là số chính phương. + Cho tam giác ABC vuông tại A. Lấy điểm D bất kỳ nằm giữa B và C. Gọi E, F lần lượt là hình chiếu của D trên AB và AC. a) Chứng minh EB.FC = ED.FD. b) Chứng minh SABD = AB.AD/2.sin BAD. c) Trên cạnh BC lấy điểm M sao cho CAM = BAD. Chứng minh. + Cho 2022 số nguyên dương trong đó nếu 4 số khác nhau thì chúng phải lập được một tỷ lệ thức. Chứng minh trong 2022 số đó có ít nhất 505 số bằng nhau.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Lý Nhật Quang - Nghệ An (vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 trường THCS Lý Nhật Quang, huyện Đô Lương, tỉnh Nghệ An (vòng 2). Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Lý Nhật Quang – Nghệ An (vòng 2) : + Cho P = abc là số nguyên tố có ba chữ số. Chứng minh rằng phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. + Có 48 quả cân có khối lượng là 1g, 2g, 3g, …, 48g. Hãy phân chia tất cả các quả cân đó thành ba nhóm sao cho tổng khối lượng của số quả cân trong ba nhóm bằng nhau. + Nhân dịp chào mừng ngày Hiến Chương Nhà Giáo Việt Nam và ngày kỷ niệm 45 năm thành lập trường THCS Lý Nhật Quang, Ban Giám Hiệu nhà trường đã dự định mời 100 đại biểu về dự, trong đó mỗi người đều quen không ít hơn 50 người. Chứng tỏ rằng Ban Giám Hiệu nhà trường có thể xếp được bốn người vào một bàn tròn sao cho mỗi người ngồi giữa hai người quen của mình.