Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng đạo hàm Toán 11 Cánh Diều

Tài liệu gồm 106 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề đạo hàm trong chương trình môn Toán 11 Cánh Diều (CD). BÀI 1 . ĐỊNH NGHĨA ĐẠO HÀM. Ý NGHĨA HÌNH HỌC CỦA ĐẠO HÀM. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Tìm số gia của hàm số. + Dạng 2. Tính đạo hàm bằng định nghĩa. + Dạng 3. Ý nghĩa vật lý của đạo hàm. + Dạng 4. Phương trình tiếp tuyến. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 2 . CÁC QUI TẮC TÍNH ĐẠO HÀM. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Đạo hàm của hàm đa thức. + Dạng 2. Đạo hàm của hàm phân thức. + Dạng 3. Đạo hàm của hàm chứa căn. + Dạng 4. Tính đạo hàm của các hàm số lượng giác. + Dạng 5. Giải phương trình lượng giác f'(x) = 0. + Dạng 6. Tính đạo hàm. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI 3 . ĐẠO HÀM CẤP 2. A. KIẾN THỨC CƠ BẢN CẦN NẮM. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP. + Dạng 1. Tính đạo hàm cấp cao của hàm số y = f(x). + Dạng 2. Ý nghĩa vật lý của đạo hàm cấp hai. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA. D. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP CUỐI CHƯƠNG VII. A. BÀI TẬP TRẮC NGHIỆM. B. BÀI TẬP TỰ LUẬN. BÀI TẬP TỔNG ÔN CHƯƠNG VII. A. BÀI TẬP TRẮC NGHIỆM. B. BÀI TẬP TỰ LUẬN.

Nguồn: toanmath.com

Đọc Sách

Thủ thuật tính đạo hàm của một số hàm cơ bản bằng Casio - Nguyễn Minh Tuấn
Tài liệu giới thiệu một số thủ thuật tính nhanh đạo hàm các hàm số cơ bản bằng cách sử dụng máy tính cầm tay Casio. Các hàm được giới thiệu gồm: A. Tính đạo hàm của một đa thức B. Tính đạo hàm của một phân thức C. Tính đạo hàm của hàm 1 căn D. Tính đạo hàm của hàm 2 căn [ads]
Chuyên đề đạo hàm và ý nghĩa của đạo hàm - Lê Minh Cường
Dưới đây là ebook tổng hợp kiến thức và nội dung của phần ý nghĩa đạo hàm – lớp 11 có đáp án và lời giải chi tiết ở cuối ebook. Đây là phần kiến thức cơ bản và là nên tảng đề các bạn học sinh tìm hiểu sâu hơn về ý nghĩa của đạo hàm nói chung và phương trình tiếp tuyến của hàm số nói riêng. Trong năm tuyển sinh 2018, bộ GD&ĐT sẽ đưa thêm phần kiến thức của khối lớp 11 vào cấu trúc đề thi, do đó các bạn học sinh cần chuẩn bị những kiến thức căn bản để có thể sử dụng một cách nhanh gọn các đề thi trắc nghiệm. Nội dung chuyên đề bao gồm : Các công thức cần nhớ Ý nghĩa hình học của đạo hàm [ads] + Ý nghĩa hình học của đạo hàm + Viết phương trình tiếp tuyến tại điểm giao với trục Ox, Oy hoặc giao với đồ thị hàm số khác + Viết phương trình tiếp tuyến biết hệ số góc + Viết phương trình tiếp tuyến qua điểm cho trước + Các bài toán tiếp tuyến chứa tham số m Ý nghĩa vật lý của đạo hàm Các bài toán liên quan đến đạo hàm Đáp án Lời giải chi tiết
Chuyên đề đạo hàm - Nguyễn Bảo Vương
Tài liệu gồm 185 trang gồm lý thuyết, công thức đạo hàm cơ bản và mở rộng, phân dạng và hướng dẫn giải các dạng toán chuyên đề đạo hàm, các bài tập có đáp án. Tập 1. Khái niệm đạo hàm và các phương pháp tính đạo hàm Khái niệm đạo hàm: Tính đạo hàm bằng định nghĩa Các quy tắc tính đạo hàm + Vấn đề 1. Tính đạo hàm bằng công thức + Vấn đề 2. Sử dụng đạo hàm để tìm giới hạn + Vấn đề 3. Đạo hàm cấp cao và vi phân Đạo hàm tổng hợp [ads] Tập 2. Phương trình tiếp tuyến + Vấn đề 1. Viết phương trình tiếp tuyến của đồ thị hàm số khi biết tiếp điểm + Vấn đề 2. Viết phương trình tiếp tuyến của đồ thị hàm số khi biết hệ số góc của tiếp tuyến + Vấn đề 3. Viết phương trình tiếp tuyến của đồ thị hàm số khi tiếp tuyến đi qua điểm cho trước Tập 3. 250 bài tập trắc nghiệm đạo hàm tự luyện Bài 1: Định nghĩa và ý nghĩa của đạo hàm Bài 2: Quy tắc tính đạo hàm Bài 3: Đạo hàm của hàm số lượng giác Bài 4: Vi phân Bài 5: Đạo hàm cấp cao
Trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 86 trang tổng hợp câu hỏi và bài tập trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm đạo hàm có giải chi tiết trong các đề thi thử Toán 2018 : + (THPT Chuyên Hùng Vương – Phú Thọ – lần 1 – NH2017 – 2018) Phát biểu nào trong các phát biểu sau là đúng? A. Nếu hàm số y = f(x) có đạo hàm trái tại x0 thì nó liên tục tại điểm đó. B. Nếu hàm số y = f(x) có đạo hàm phải tại x0 thì nó liên tục tại điểm đó. C. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm -x0. D. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó. [ads] + (THPT Chuyên Vĩnh Phúc – MĐ 903 lần 1 – năm 2017 – 2018) Cho hàm số y = x^3 + 1, gọi Δx là số gia của đối số tại x và Δy là số gia tương ứng của hàm số, tính Δy/Δx. + (THPT Thăng Long – Hà Nội – lần 1 năm 2017 – 2018) Có bao nhiêu điểm thuộc đồ thị hàm số y = (2x – 1)/(x – 1) thỏa mãn tiếp tuyến với đồ thị có hệ số góc bằng 2018?