Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 12 môn Toán lần 2 năm 2018 2019 trường Hậu Lộc 1 Thanh Hóa

Nội dung Đề thi KSCL lớp 12 môn Toán lần 2 năm 2018 2019 trường Hậu Lộc 1 Thanh Hóa Bản PDF Sytu giới thiệu đến thầy, cô và các em học sinh khối 12 đề thi KSCL Toán lớp 12 lần 2 năm học 2018 – 2019 trường THPT Hậu Lộc 1 – Thanh Hóa, đây là đề thi thử THPT Quốc gia 2019 môn Toán để giúp học sinh thử sức trong quá trình chuẩn bị cho kỳ thi chính thức THPT Quốc gia môn Toán năm học 2018 – 2019 dự kiến diễn ra vào cuối tháng 06 năm 2019. Đề thi KSCL Toán lớp 12 lần 2 năm học 2018 – 2019 trường THPT Hậu Lộc 1 – Thanh Hóa gồm 4 mã đề, đề được biên soạn bám sát cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 mà Bộ Giáo dục và Đào tạo đã từng công bố, đề thi có đáp án đầy đủ các mã đề 152, 186, 220, 254. [ads] Trích dẫn đề thi KSCL Toán lớp 12 lần 2 năm 2018 – 2019 trường Hậu Lộc 1 – Thanh Hóa : + Để đủ tiền mua nhà, anh An vay ngân hàng 500 triệu theo phương thức trả góp với lãi suất 0,85 % / tháng. Nếu sau mỗi tháng, kể từ thời điểm vay, anh An trả nợ cho ngân hàng số tiền cố định là 10 triệu đồng bao gồm cả tiền lãi vay và tiền gốc. Biết phương thức trả lãi và gốc không thay đổi trong suốt quá trình anh An trả nợ. Hỏi sau bao nhiêu tháng thì anh trả hết nợ ngân hàng? (tháng cuối có thể trả dưới 10 triệu đồng). + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c là những số dương thay đổi thỏa mãn a^2 + 4b^2 + 16c^2 = 49. Tính tổng S = a^2 + b^2 + c^2 khi khoảng cách từ O đến mặt phẳng (ABC) đạt giá trị lớn nhất. + Cho tam giác đều ABC có đỉnh A(5;50 nội tiếp đường tròn tâm I đường kính AA’, M là trung điểm BC. Khi quay tam giác ABM cùng với nửa đường tròn đường kính AA’ xung quanh đường thẳng AM (như hình vẽ minh họa), ta được khối nón và khối cầu có thể tích lần lượt là V1 và V2. Tỷ số V1/V2 bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán THPT năm 2021 2022 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thái Bình; kỳ thi nhằm kiểm tra kiến thức đối với học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông năm 2022 môn Toán. Trích dẫn đề khảo sát chất lượng Toán lớp 12 THPT năm 2021 – 2022 sở GD&ĐT Thái Bình : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z – 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;–4); B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S) và đáy là đường tròn (C) có thể tích lớn nhất. Biết rằng (a): ax + by − z + c = 0. Khi đó a − b + c bằng? + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 3m + 10 = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m để phương trình đó có hai nghiệm z1 và z2 không phải số thực thỏa mãn |z1| + |z2| =< 8? + Cho a và b là hai số thay đổi thoả mãn a > 1; b > 1 và a + b = 12. Giả sử x1; x2 là hai nghiệm của phương trình: logax.logbx − logax − logbx − 1 = 0. Giá trị lớn nhất của biểu thức P = x1.x2 là?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?