Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 năm 2019 - 2020 trường Nguyễn Trãi - Đà Nẵng

giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 12 năm học 2019 – 2020 trường THPT Nguyễn Trãi – Đà Nẵng; đề thi có mã đề 170 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, kỳ thi nhằm ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2019 – 2020 trường Nguyễn Trãi – Đà Nẵng : + Bạn A muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 90 (cm). Bạn muốn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với M và N thuộc cạnh BC; P và Q tương ứng thuộc cạnh AC và AB) để tạo thành hình trụ có chiều cao bằng MQ. Thể tích lớn nhất của chiếc thùng mà bạn A có thể làm được là? + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng của C qua D, N là trung điểm SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tỉ số thể tích giữa hai phần (phần lớn trên phần bé) bằng? [ads] + Cho biết rằng sự tỉ lệ tăng dân số thế giới hàng năm là 1,32%, nếu tỉ lệ tăng dân số không thay đổi thì dân số sau N năm được tính theo công thức tăng trưởng liên tục S = Ae^Nr trong đó A là dân số tại thời điểm mốc, S là số dân sau N năm, r là tỉ lệ tăng dân số hàng năm. Năm 2013 dân số thế giới vào khoảng 7095 triệu người. Biết năm 2020 dân số thế giới gần nhất với giá trị nào sau đây? A. 7782 triệu người. B. 7680 triệu người. C. 7879 triệu người. D. 7777 triệu người.

Nguồn: toanmath.com

Đọc Sách

Đề thi công bằng Toán 12 lần 1 năm 2022 - 2023 trường chuyên KHTN - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi công bằng môn Toán 12 lần 1 năm học 2022 – 2023 trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội; kỳ thi được diễn ra vào thứ Ba ngày 11 tháng 10 năm 2022. Trích dẫn Đề thi công bằng Toán 12 lần 1 năm 2022 – 2023 trường chuyên KHTN – Hà Nội : + Một nhóm gồm 6 nam và 4 nữ. Chọn ngẫu nhiên bốn người. a) Tính xác suất để bốn người được chọn đều là nam. b) Tính xác suất để bốn người được chọn có cả nam và nữ. + Trong không gian với hệ toạ độ Oxyz, cho bốn điểm A B C 1 1 2 0 1 1 1 1 0 và D 0 0 8. a) Chứng minh rằng bốn điểm A, B, C, D lập thành một tứ diện. b) Viết phương trình mặt phẳng đi qua ba điểm A B C. c) Viết phương trình mặt phẳng (P) song song với mặt phẳng (ABC) cắt các cạnh DA DB DC tương ứng tại A B C sao cho 1 8 V V DA B DABC. + Cho hàm số f x có đạo hàm f x là hàm liên tục và có bảng biến thiên như sau. Tìm số điểm cực trị của hàm số 3 2 y f x f x f x 2.
Đề kiểm tra KSCL Toán 12 đầu năm 2022 - 2023 trường THPT Hàm Long - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát chất lượng môn Toán 12 đầu năm học 2022 – 2023 trường THPT Hàm Long, tỉnh Bắc Ninh; đề thi gồm 06 trang với 50 câu hỏi và bài toán theo hình thức trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án mã đề 101 102 103 104 105 106. Trích dẫn Đề kiểm tra KSCL Toán 12 đầu năm 2022 – 2023 trường THPT Hàm Long – Bắc Ninh : + Trong các mệnh đề dưới đây, mệnh đề nào sai? A. Hình chóp tứ giác đều có hình chiếu vuông góc của đỉnh lên đáy trùng với tâm của đáy. B. Hình chóp tứ giác đều có tất cả các cạnh bằng nhau. C. Hình chóp tứ giác đều có đáy là hình vuông. D. Hình chóp tứ giác đều có các cạnh bên bằng nhau. + Cho hình chóp S.ABC có SA ⊥ (ABC), đáy ABC vuông tại A. Mệnh đề nào sau đây sai: A. góc giữa (SBC) và (SAC) là góc SCB B. (SAB) ⊥ (ABC) C. (SAB) ⊥ (SAC) D. Vẽ AH ⊥BC,H thuộc BC. Góc giữa (SBC) và (ABC) là góc AHS. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của (SMN) và (SAC) là: A. SO (O là tâm của ABCD) B. SD C. SG (G là trung điểm AB) D. SF (F là trung điểm CD).
Đề kiểm tra chất lượng Toán 12 đầu năm 2022 - 2023 THPT Hàn Thuyên - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng môn Toán 12 đầu năm học 2022 – 2023 trường THPT Hàn Thuyên, tỉnh Bắc Ninh; đề thi mã đề 132 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung đề nằm trong chương trình Toán 10 và Toán 11; đề thi có đáp án mã đề 132 209 357 485 570 628 743 896. Trích dẫn đề kiểm tra chất lượng Toán 12 đầu năm 2022 – 2023 THPT Hàn Thuyên – Bắc Ninh : + Tại vòng chung kết của một trò chơi trên truyền hình, có 100 khán giả tại trường quay có quyền bình chọn cho hai thí sinh A và B. Biết rằng có 85 khán giả bình chọn cho thí sinh A, 72 khán giả bình chọn cho thí sinh B và 60 khán giả bình chọn cho cả hai thí sinh này. Có bao nhiêu khán giả tham gia bình chọn? + Trong dịp hội trại hè 2022, bạn An thả một quả bóng cao su từ độ cao 6 m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng ba phần tư độ cao lần rơi trước. Biết rằng quả bóng luôn chuyển động vuông góc với mặt đất. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng? + Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC có phương trình đường thẳng chứa cạnh BC là x y 2 4 0. Gọi D E 2 2 1 4 lần lượt là hình chiếu vuông góc của B lên AC AI với I là tâm đường tròn ngoại tiếp tam giác ABC. Giả sử toạ độ điểm B là B a b tính 2 3 a b biết đỉnh B có hoành độ âm.
Đề khảo sát Toán 12 lần 4 năm 2022 trường chuyên Hùng Vương - Phú Thọ
Nhằm hướng đến kỳ thi tốt nghiệp THPT 2022 môn Toán, giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 4 năm học 2021 – 2022 trường THPT chuyên Hùng Vương, thành phố Việt Trì, tỉnh Phú Thọ; đề thi có đáp án mã đề 122; kỳ thi được diễn ra vào tháng 06 năm 2022. Trích dẫn đề khảo sát Toán 12 lần 4 năm 2022 trường chuyên Hùng Vương – Phú Thọ : + Tính hết năm 2021, diện tích rừng của tỉnh Phú Thọ là 140600 ha, tỷ lệ che phủ rừng trên địa bàn tỉnh đạt 39,8%. Trong năm 2021 tỉnh Phú Thọ trồng mới được 1000 ha.Giả sử diện tích rừng trồng mới của tỉnh mỗi năm tiếp theo đều tăng 6% so với diện tích rừng trồng mới của năm liền trước. Năm nào dưới đây là năm đầu tiên tỉnh có diện tích rừng đạt tỷ lệ che phủ 45%? + Cho hàm số 4 2 f x x bx c b c có đồ thị là đường cong C và đường thẳng d y g x tiếp xúc với C tại điểm 0 x 1. Biết d và C còn có hai điểm chung khác có hoành độ là x x x x 1 2 1 2 và 2 1 2 4 d 1 3 x x g x f x x x. Tính diện tích hình phẳng giới hạn bởi đường cong C và đường thẳng d. + Cho hình nón đỉnh S, đáy là hình tròn tâm O, góc ở đỉnh của hình nón là 120. Cắt hình nón bởi mặt phẳng đi qua đỉnh S được thiết diện là tam giác vuông SAB, trong đó A B thuộc đường tròn đáy. Biết rằng khoảng cách giữa SO và AB bằng 3. Diện tích xung quanh của hình nón bằng?