Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

15 đề thi HSG cấp huyện Toán 7 có lời giải chi tiết

Nhằm cung cấp tư liệu để các em học sinh lớp 7 ôn luyện chuẩn bị cho kỳ thi học sinh giỏi Toán lớp 7 cấp huyện, THCS. giới thiệu đến các em tài liệu tuyển chọn 15 đề thi HSG cấp huyện Toán 7 có lời giải chi tiết, tài liệu gồm 74 trang được tổng hợp bởi tác giả Toán Họa. Trích dẫn nội dung tài liệu 15 đề thi HSG cấp huyện Toán 7 có lời giải chi tiết: + Tìm một số tự nhiên có 3 chữ số, biết rằng nếu tăng chữ số hàng trăm thêm n đơn vị đồng thời giảm chữ số hàng chục và giảm chữ số hàng đơn vị đi n đơn vị thì được một số có 3 chữ số gấp n lần số có 3 chữ số ban đầu. [ads] + Cho đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB vẽ hai tia Ax và By lần lượt vuông góc với AB tại A và B. Gọi O là trung điểm của đoạn thẳng AB. Trên tia Ax lấy điểm C và trên tia By lấy điểm D sao cho góc COD bằng 90 độ. a) Chứng minh rằng: AC + BD = CD. b) Chứng minh rằng: AC.BD = AB^2/4. + Cho tam giác ABC có góc A = 3B = 6C. a) Tính số đo các góc của tam giác ABC. b) Kẻ AD vuông góc với BC (D thuộc BC). Chứng minh: AD < BD < CD.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Đức Thọ - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 08 tháng 04 năm 2022. Trích dẫn đề thi Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Đức Thọ – Hà Tĩnh : + Biết trung bình cộng của 16 số bằng 4. Thêm vào số thứ mười bảy thì trung bình cộng của chúng bằng 5. Tìm số thứ mười bảy? + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Cho tam giác ABC vuông cân tại A; M là trung điểm của cạnh BC. Lấy điểm D bất kỳ thuộc đoạn thẳng BM. Kẻ BH vuông góc với AD (H thuộc AD), CI vuông góc với AD (I thuộc AD). Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) ΔΑΗΒ = ΔCIA. c) IM là tia phân giác của góc CID.
Đề thi Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An.
Đề thi HSG cấp trường Toán 7 năm 2020 - 2021 trường THCS Cẩm Bình - Hà Tĩnh
Đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG cấp trường Toán 7 năm 2020 – 2021 trường THCS Cẩm Bình – Hà Tĩnh : + Tam giác ABC có các tia phân giác của góc B và góc C cắt nhau tại O. Tính số đo của góc A biết BOC = 120°. + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC.
Đề thi học sinh giỏi Toán 7 năm 2020 - 2021 phòng GDĐT Trực Ninh - Nam Định
Đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2020 – 2021 phòng GD&ĐT Trực Ninh – Nam Định : + Cho ABC vuông tại A có B 2C. Kẻ AH BC (H BC). Trên tia HC lấy D sao cho HD HB. Từ C kẻ đường thẳng CE vuông góc với đường thẳng AD (E AD). a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh DH DE HE AC. c) So sánh 2 HE và 2 2 4 BC AD. d) Gọi K giao AH và CE, lấy điểm I bất kì thuộc đoạn thẳng HE I khác H; I khác E. Chứng minh 3 2 AC IA IK IC. + Chứng minh đa thức sau không có nghiệm. + Chứng minh rằng 2021 10 539 9 có giá trị là một số tự nhiên.