Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bến Tre

Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bến Tre Bản PDF Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bến Tre (dành cho hệ THPT) gồm 04 câu tự luận, học sinh có 180 phút để làm bài, kỳ thi nhằm tuyển chọn các em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bến Tre để thành lập đội tuyển học sinh giỏi Toán lớp 12 cấp tỉnh, tham dự kỳ thi HSG Toán THPT cấp Quốc gia, các em đạt giải cũng sẽ là tấm gương trong học tập cho học sinh toàn tỉnh, lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán VD – VDC. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bến Tre : + Bạn An có đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q trong đó p và q là các số nguyên tố cùng nhau, tìm q – p. [ads] + Cho hình chóp S.ABC, có SA vuông góc với mặt phẳng (ABC), SA = 2a và tam giác ABC vuông tại C với AB = 2a, góc BAC = 30 độ. Gọi M là điểm di động trên cạnh AC, đặt AM = x (0 ≤ x ≤ a√3). Tính khoảng cách từ S đến BM theo a và x. Tìm các giá trị của x để khoảng cách này lớn nhất. + Cho hàm số y = (x + 1)/(2x – 1) có đồ thị (C). Viết phương trình tiếp tuyến (d) của đồ thị (C) biết (d) cắt trục Ox, Oy lần lượt tại A, B sao cho AB = OA√10 (với O là gốc tọa độ).

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Quảng Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình; đề thi gồm Bài Thi Thứ Nhất và Bài Thi Thứ Nhất, có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 20 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Cho P x là đa thức monic bậc n (với n) có đúng n nghiệm thực phân biệt. Biết rằng tồn tại duy nhất số thực a mà 2 Pa a 4 2022 0. Chứng minh rằng đa thức 2 Px x 4 2022 chia hết cho đa thức 2 2 x và 2022 4 n P. + Cho tam giác ABC có AB AC I là tâm đường tròn nội tiếp và T là đường tròn ngoại tiếp tam giác ABC. Các đường thẳng BI và CI lần lượt cắt T tại điểm thứ hai là M và N. Gọi D là điểm thuộc T, nằm trên cung BC không chứa A; E F lần lượt là các giao điểm của AD với BI và CI; P là giao điểm của DM với CI; Q là giao điểm của DN với BI. a) Chứng minh rằng các điểm DI PQ cùng nằm trên một đường tròn Ω. b) Chứng minh rằng các đường thẳng CE và BF cắt nhau tại một điểm trên đường tròn Ω. + Cho A là tập hợp gồm các số nguyên dương thỏa mãn đồng thời hai điều kiện sau: a) Nếu a A thì tất cả các ước số dương của a cũng thuộc A. b) Nếu ab A mà 1 a b thì 1 ab A. Chứng minh rằng nếu A có ít nhất 3 phần tử thì A là tập hợp tất cả các số nguyên dương.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi mã đề 357 được biên soạn theo cấu trúc 100% trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Thái Bình : + Cho hàm số f(x) và g(x) (với m là tham số). Số giá trị nguyên của tham số m để đồ thị hai hàm số y = f(x) và y = g(x) cắt nhau tại đúng hai điểm phân biệt có hoành độ thuộc khoảng (0;10) là? + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D, SA vuông góc với mặt đáy (ABCD); AB = 2a, AD = CD = a. Góc giữa mặt phẳng (SBC) và mặt đáy (ABCD) là 60°. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB cắt các cạnh SA, SB lần lượt tại M, N. Thể tích V của khối chóp S.CDMN theo a là? + Cho hàm số f(x) = x3 − 3×2 + 2 có đồ thị (C). Gọi M, N là hai điểm phân biệt trên (C) sao cho hai tiếp tuyến tại M và N song song với nhau và đường thẳng MN cắt trục hoành, trục tung lần lượt tại A, B khác gốc tọa độ O sao cho AB = 10. Khi đó tiếp tuyến của đồ thị (C) tại M hoặc N có hệ số góc là?
Đề học sinh giỏi thành phố Toán THPT năm 2022 - 2023 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi thành phố môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hải Phòng; đề thi gồm 02 trang với 08 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Năm ngày 08 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi thành phố Toán THPT năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Gọi A là tập hợp tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập hợp A. Tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1. + Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 4a. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho ABM = MBI và MN vuông góc BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. a) Tính thể tích của khối chóp S.AMCB theo a. b) Tính khoảng cách từ điểm N đến mặt phẳng (SBC) theo a. + Trong mặt phẳng tọa độ (Oxy), cho hình thang ABCD có góc BAD = ADC = 90°, D(2;2) và CD = 2AB. Gọi H là hình chiếu vuông góc của điểm D trên đường thẳng AC. Điểm M là trung điểm của đoạn HC. Tìm tọa độ các điểm A, B và C biết rằng đỉnh B thuộc đường thẳng d có phương trình x − 2y + 4 = 0. + Cho ba số thực dương x, y, z thỏa mãn 5(x2 + y2 + z2) = 9(xy + 2yz + zx). Tìm giá trị lớn nhất của biểu thức P.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Khánh Hòa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Khánh Hòa : + Cho hàm số y = x4 – 2(m + 1)x2 + 2m + 1 có đồ thị (C). a) Với m = 1, tính diện tích của tam giác có 3 đỉnh là 3 điểm cực trị của đồ thị (C). b) Tìm tất cả các giá trị dương của tham số m để đồ thị (Cm) cắt trục hoành tại bốn điểm phân biệt và tiếp tuyến của (Cm) tại giao điểm có hoành độ lớn nhất hợp với hai trục tọa độ một tam giác có diện tích bằng 24. + Bạn An chọn ngẫu nhiên 3 quả cầu từ hộp gồm 19 quả cầu được đánh số thứ tự từ 1 đến 19. Hỏi có bao nhiêu cách chọn sao cho các số thứ tự ghi trên 3 quả cầu có tổng chia hết cho 4. + Biết rằng với mỗi n thuộc N*, luôn tồn tại duy nhất hai số nguyên dương an, bn sao cho. Chứng minh là số chính phương.