Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Lâm Đồng

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Lâm Đồng Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022-2023 sở GD&ĐT Lâm Đồng Chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Lâm Đồng. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 03 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán lớp 9 năm 2022-2023 sở GD&ĐT Lâm Đồng: + Vấn đề thứ nhất: An mua một chiếc laptop cũ đã qua sử dụng 1 năm với giá 29,6 triệu đồng và sau 3 năm sử dụng, An bán chiếc laptop đó với giá 17 triệu đồng. An thắc mắc về sự chênh lệch giữa giá mua và giá bán và được nhân viên cửa hàng giải thích về mối liên hệ giữa giá tiền của một chiếc laptop và thời gian sử dụng. Hãy tính giá tiền ban đầu của chiếc laptop khi chưa qua sử dụng. + Vấn đề thứ hai: Lâm và Đồng mua số tờ giấy trắng và phong bì bằng nhau để viết thư gửi các bạn thiếu nhi tại huyện đảo Trường Sa. Lâm sử dụng một tờ giấy cho mỗi bức thư, còn Đồng sử dụng ba tờ giấy cho mỗi bức thư. Tìm số tờ giấy mỗi bạn đã mua. + Vấn đề thứ ba: Một cửa hàng bán giày thể thao hàng tuần bán được 50 đôi giày với giá 500 nghìn đồng một đôi. Cửa hàng muốn tăng doanh số bán hàng bằng cách giảm giá bán. Xác định giá bán để có lợi nhuận cao nhất, biết rằng giá nhập mỗi đôi giày là 300 nghìn đồng. Hãy chuẩn bị cho bản thân mình và hãy cố gắng học tập mỗi ngày để tự tin bước vào kỳ thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm 2022-2023. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 liên trường THCS huyện Diễn Châu Nghệ An
Nội dung Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 liên trường THCS huyện Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 1 năm 2022 – 2023 Đề HSG Toán lớp 9 vòng 1 năm 2022 – 2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp trường vòng 1 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn một số câu hỏi từ đề thi: + Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức x² – 4x – 5, biết f(x) khi chia cho x – 5 được số dư 14 và khi chia cho x + 1 được số dư 2. + Chứng minh rằng tam giác ABC có trọng tâm G, khi vẽ đường thẳng d cắt các cạnh AB, AC thì tổng AB + AC + AD + AE có giá trị không đổi khi đường thẳng d thay đổi vị trí. + Chứng minh rằng trong tam giác nhọn ABC, có đường cao AD, BE, CF cắt nhau tại H, ta có: EF // BC với A cos và 2AH = 4IK = IM. Các em hãy tự tin và chuẩn bị tốt cho bài thi sắp tới. Chúc các em thành công!
Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Chào mừng đến với đề khảo sát chất lượng cho đội tuyển học sinh giỏi môn Toán lớp 9 tháng 10 năm học 2022 – 2023 tại phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Đề khảo sát bao gồm các câu hỏi sau: Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. Tính DE3/BD.CE theo R. Tính: AI/HB + AI/HC. Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất. Hãy tự tin và cố gắng hết mình để hoàn thành đề khảo sát này. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!
Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Sytu xin gửi đến quý thầy cô và các bạn học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Kỳ thi sẽ được tổ chức vào ngày 07 tháng 09 năm 2022. Dưới đây là một số câu hỏi mẫu trong đề khảo sát: 1. Tìm nghiệm nguyên của phương trình: (x + y)2(1 + xy) + 4xy = 6(x + y). 2. Cho hai số tự nhiên a, b thỏa mãn: a3/(a + b); b3/(b + a) đều là số nguyên tố. Chứng minh rằng a2 + 2b + 1 là số chính phương. 3. Xác định vị trí của điểm C trên nửa đường tròn để độ dài đoạn thẳng JK là lớn nhất. Đây là những câu hỏi đòi hỏi sự tư duy logic, các khái niệm Toán học cơ bản và khả năng giải quyết vấn đề. Chúc các em học sinh có sự chuẩn bị tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi Toán cấp quận năm 2022 2023 phòng GD ĐT Đống Đa Hà Nội
Nội dung Đề học sinh giỏi Toán cấp quận năm 2022 2023 phòng GD ĐT Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội Sytu xin chào đến quý thầy cô và các em học sinh lớp 9 với đề thi chọn học sinh giỏi môn Toán THCS cấp quận năm học 2022-2023 do Phòng Giáo dục và Đào tạo UBND quận Đống Đa, Hà Nội tổ chức. Kỳ thi sẽ diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn một số câu hỏi trong Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội: Câu 1: Cho các số thực a, b, c thỏa mãn 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. Câu 2: Tìm số tự nhiên n sao cho 2n - 1 chia hết cho 7. Câu 3: Trên bảng viết 100 phân số. Thực hiện trò chơi: tại mỗi bước, xóa đi hai số a, b bất kì trên bảng, và viết thêm số (a - b + ab). Chứng minh rằng sau một số bước thực hiện, trên bảng còn lại đúng một số tự nhiên. Hy vọng các em sẽ cố gắng và tự tin để giải quyết các câu hỏi thú vị này. Chúc quý thầy cô và các em có một kỳ thi thành công!