Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường THPT chuyên Thái Bình

Ngày … tháng 01 năm 2021, trường THPT chuyên Thái Bình, tỉnh Thái Bình tổ chức kỳ thi kiểm tra chất lượng học tập môn Toán 12 năm học 2020 – 2021 lần thứ hai, nhằm giúp học sinh khối 12 rèn luyện kiến thức thường xuyên để hướng đến kỳ thi tốt nghiệp THPT Quốc gia 2021 môn Toán. Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT chuyên Thái Bình mã đề 366 gồm 06 trang, đề được biên soạn theo hình thức đề thi 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT chuyên Thái Bình : + Ông An muốn xây một bể chứa nước dạng hình hộp chữ nhật, phần nắp trên ông để trống một ô có diện tích bằng 20% diện tích của đáy bể. Biết đáy bể là một hình chữ nhật có chiều dài gấp đôi chiều rộng, bể có thể tích chứa tối đa 10m3 nước và giá tiền thuê nhân công là 500000 đồng / m2. Số tiền ít nhất mà ông phải trả cho nhân công gần nhất với đáp án nào dưới đây? + Cho hai khối cầu đồng tâm có bán kính là 1 và 4. Xét hình chóp S.A1A2A3A4A5A6 có đỉnh S thuộc mặt cầu nhỏ và các đỉnh Ai (i = 1..6) thuộc mặt cầu lớn. Tìm giá trị lớn nhất của thể tích khối chóp S.A1A2A3A4A5A6. + Một nhóm học sinh trường THPT chuyên Thái Bình có 8 học sinh nữ và 4 học sinh nam. Xếp ngẫu nhiên nhóm học sinh này thành một hàng dọc. Tính xác suất sao cho không có hai bạn nam nào đứng cạnh nhau.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra khảo sát Toán 12 năm 2023 - 2024 sở GDĐT Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát học sinh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND thành phố Hà Nội; kỳ thi được diễn ra vào chiều thứ Sáu ngày 05 tháng 04 năm 2024. Trích dẫn Đề kiểm tra khảo sát Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội : + Sau khi uống rượu và điều khiển xe ô tô trên đường, ông A bị xử phạt số tiền 40 000 000 đồng và phải hoàn thành trong thời hạn 10 ngày kể từ ngày vi phạm. Theo Thông tư số 18/2023/TT-BTC của Bộ tài chính ngày 21 tháng 03 năm 2023, cứ mỗi ngày chậm nộp phạt, cá nhân phải nộp thêm 0,05% trên tổng số tiền phạt chưa nộp. Để số tiền phải nộp thêm do chậm nộp phạt không quá 200 000 đồng thì ngày muộn nhất ông A phải đến nộp tiền là ngày thứ bao nhiêu kể từ ngày vi phạm? + Một chiếc hộp có chứa 19 tấm thẻ được đánh số từ 1 đến 19. Lấy ngẫu nhiên cùng lúc hai tấm thẻ trong hộp. Xác suất để lấy được hai tấm thẻ cùng mang số lẻ bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành tâm O (tham khảo hình vẽ). Gọi M là trung điểm của OD. Khoảng cách từ điểm B tới mặt phẳng (SCD) bằng 4. Khi đó khoảng cách từ điểm M tới mặt phẳng (SCD) bằng?
Đề khảo sát lần 3 Toán 12 năm 2023 - 2024 trường THPT Đội Cấn - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2023 – 2024 trường THPT Đội Cấn, tỉnh Vĩnh Phúc; đề thi có đáp án mã đề 035. Trích dẫn Đề khảo sát lần 3 Toán 12 năm 2023 – 2024 trường THPT Đội Cấn – Vĩnh Phúc : + Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4 3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337 3 cm 3 π. Tính thể tích nước ban đầu ở trong bể. + E. coli là vi khuẩn đường ruột gây tiêu chảy, đau bụng dữ dội. Cứ sau 20 phút thì số lượng vi khuẩn E. coli tăng gấp đôi. Ban đầu, chỉ có 40 vi khuẩn E. coli trong đường ruột. Hỏi sau bao lâu, số lượng vi khuẩn E. coli là 671088640 con? + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;5;-1), B(1;1;3). Tìm tọa độ điểm M thuộc (Oxy) sao cho MA MB nhỏ nhất?
Đề khảo sát chất lượng Toán 12 THPT năm 2023 - 2024 sở GDĐT Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Thọ; kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 12 THPT năm 2023 – 2024 sở GD&ĐT Phú Thọ : + Cho khối trụ có hai đáy lần lượt là hình tròn tâm O, O’ và chiều cao bằng 2a. Một mặt phẳng đi qua tâm O, tạo với OO’ một góc 30° đồng thời cắt hai đường tròn tâm O, O’ tại bốn điểm tạo thành bốn đỉnh của một hình thang có đáy lớn gấp đôi đáy nhỏ và diện tích bằng 2a2. Thể tích của khối trụ đã cho bằng? + Cho hàm số f(x) liên tục trên R và thỏa mãn. Đồ thị hàm số g (x) = ax3 + bx2 + cx – 9 cắt đồ thị hàm số f(x) tại 3 điểm có hoành độ là 1; 2; 3. Hình phẳng giới hạn bởi đồ thị hai hàm số f(x) và g(x) có diện tích bằng? + Cho tập hợp A = {1; 2; 3; …; 11}. Chọn ngẫu nhiên 4 số từ A. Xác suất để tổng 4 số được chọn là một số lẻ bằng?
Đề khảo sát lần 1 Toán 12 năm 2023 - 2024 trường THPT Đinh Tiên Hoàng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Đinh Tiên Hoàng, thành phố Hà Nội; đề thi có đáp án mã đề 121 – 122 – 123 – 124 – 125 – 126 – 127 – 128. Trích dẫn Đề khảo sát lần 1 Toán 12 năm 2023 – 2024 trường THPT Đinh Tiên Hoàng – Hà Nội : + Anh Nam là sinh viên mới ra trường, nhận được việc làm với mức lương 6 triệu đồng/tháng. Anh ấy dự định hằng tháng sẽ trích ra ít nhất a% lương của mình để gửi tiết kiệm, với mong muốn là sau đúng 2 năm kể từ lần gửi đầu tiên và sau lần gửi cuối cùng đúng 1 tháng tổng số tiền cả gốc và lãi thu được đủ để mua một chiếc xe máy trị giá 25 triệu đồng. Biết rằng lãi suất là 0, 55% / tháng, hai lần gửi liên tiếp cách nhau 1 tháng và theo hình thức lãi kép, đồng thời lãi suất và lương không thay đổi trong suốt thời gian gửi. Hỏi a gần nhất với số nào sau đây? + Cho G là thập giác đều và M là tập hợp 11 điểm gồm 10 đỉnh của thập giác và tâm của G (tham khảo hình vẽ). Chọn ngẫu nhiên 3 điểm thuộc M, xác suất để 3 điểm được chọn lập thành một tam giác bằng? + Trong không gian Oxyz, cho hai điểm A(0; 1; 2), B(2; 1; −8). Từ điểm M(−3; 9; 5) kẻ được bao nhiêu đường thẳng cắt mặt cầu đường kính AB tại hai điểm C, D thỏa mãn MC + MD = 24.