Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra KSCL lớp 12 môn Toán năm 2018 2019 trường Thanh Thủy Phú Thọ lần 1

Nội dung Đề kiểm tra KSCL lớp 12 môn Toán năm 2018 2019 trường Thanh Thủy Phú Thọ lần 1 Bản PDF Đề kiểm tra KSCL Toán lớp 12 năm 2018 – 2019 trường Thanh Thủy – Phú Thọ lần 1 mã đề 145 gồm 6 trang được biên soạn theo hình thức trắc nghiệm khách quan 100% với 50 câu hỏi và bài toán, học sinh có 90 phút để làm bài, đề nhằm giúp học sinh rèn luyện các kiến thức Toán lớp 12 đã được học, đồng thời củng cố lại các kiến thức Toán lớp 10, 11 trước đây, nhằm chuẩn bị cho kỳ thi THPT Quốc gia môn Toán về sau. Trích dẫn đề kiểm tra KSCL Toán lớp 12 năm 2018 – 2019 trường Thanh Thủy – Phú Thọ lần 1 : + Mệnh đề nào sau đây đúng? A. Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì song song với nhau. B. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì vuông góc với nhau. C. Hai mặt phẳng vuông góc với nhau thì đường thẳng nào nằm trong mặt phẳng này cũng vuông góc với mặt phẳng kia. D. Một đường thẳng vuông góc với một trong hai mặt phẳng song song thì vuông góc với mặt phẳng kia. [ads] + Cho tập hợp A = {2; 3; 4; 5; 6; 7; 8}. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ là? + Một con đường được xây dựng giữa hai thành phố A, B. Hai thành phó này bị ngăn cách một con sông có chiều rộng r(m). Người ta cần xây 1 cây cầu bắc qua sông biết rằng A cách con sông một khoảng bằng 2m, B cách con sông một khoảng bằng 4m. Để tổng khoảng cách giữa các thành phố là nhỏ nhất thì giá trị x(m) bằng?

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 THPT năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Phú Thọ (mã đề 102); kỳ thi được diễn ra vào ngày … tháng 05 năm 2022. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Trong không gian Oxyz, cho hai điểm A(2;-2:6), B(3;3;-9) và mặt phẳng (P): 2x + 2y – z – 12 = 0. Điểm M di động trên (P) sao cho MA và MB luôn tạo với (P) các góc bằng nhau. Biết M luôn thuộc một đường tròn cố định. Tung độ của tâm đường tròn đó bằng? + Cho hàm số y = f(x) có đạo hàm cấp hai liên tục trên R. Hình vẽ bên dưới là đồ thị hàm số y = f'(x) trên (-vc;-2], đồ thị hàm số y = f(x) trên đoạn [-2;3] và đồ thị hàm số y = f”(x) trên [3;+vc). Số điểm cực trị tối đa của hàm số y = f(x) là? + Cho hàm số f(x) = ax4 + bx2 + c có đồ thị như hình vẽ. Biết miền tô đậm có diện tích bằng 4/15 và điểm B có hoành độ bằng -1. Số giá trị nguyên của tham số m thuộc đoạn [-3;3] để hàm số y = f(m – 3^x) có đúng một điểm cực trị là?
Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán lớp 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?