Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập có đáp án chi tiết về dạng 4 phép biến hình trong không gian mức độ 2

Nguồn: onluyen.vn

Xem

Bài tập trắc nghiệm số phức có đáp án
Tài liệu gồm 99 trang tuyển chọn các bài tập trắc nghiệm số phức có đáp án thuộc chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả: Nguyễn Ngọc Dũng, Tạ Nguyễn Đình Đăng, Vương Phú Quý, Nguyễn Viết Sinh, Nguyễn Cao Đẳng. Các bài tập trắc nghiệm số phức trong tài liệu được phân loại thành 5 dạng bài: §1. Định nghĩa số phức, các yếu tố của số phức §2. Các phép toán trên tập số phức §3. Phương trình – Hệ phương trình §4. Tập hợp điểm biểu diễn số phức – Dạng lượng giác của số phức §5. Các bài toán cực trị [ads] Xem thêm tài liệu cùng nhóm tác giả: + Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án (Giải tích 12 chương 3) + Bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án (Hình học 12 chương 3)
Câu hỏi và bài tập trắc nghiệm chuyên đề số phức - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 62 trang phân dạng và tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề số phức có đáp án và lời giải chi tiết, tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. TỔNG HỢP KIẾN THỨC 1. Khái niệm số phức 2. Hai số phức bằng nhau 3. Biểu diễn hình học số phức 4. Phép cộng và phép trừ số phức 5. Phép nhân số phức 6. Số phức liên hợp 7. Môđun của số phức 8. Chia hai số phức 9. Lũy thừa đơn vị ảo i 10. Phương trình bậc hai với hệ số thực [ads] CÂU HỎI TRẮC NGHIỆM + Vấn đề 1. Phần thực – phần ảo + Vấn đề 2. Hai số phức bằng nhau + Vấn đề 3. Biểu diễn hình học số phức + Vấn đề 4. Phép cộng – phép trừ hai số phức + Vấn đề 5. Nhân hai số phức + Vấn đề 6. Số phức liên hợp + Vấn đề 7. Mô đun của số phức + Vấn đề 8. Phép chia số phức + Vấn đề 9. Lũy thừa đơn vị ảo + Vấn đề 10. Phương với hệ số thực + Vấn đề 11. Tập hợp các điểm biểu diễn số phức + Vấn đề 12. Bài toán min – max trong số phức + Vấn đề 13. Tổng hợp LỜI GIẢI CHI TIẾT
Các dạng toán và bài tập số phức có lời giải chi tiết - Nguyễn Bảo Vương
Tài liệu gồm 128 trang tóm tắt lý thuyết, phân dạng toán và tuyển tập các bài toán trắc nghiệm, tự luận về chuyên đề số phức trong chương trình Giải tích 12 chương 3, các bài toán đều có đáp án và lời giải chi tiết. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. Các dạng toán về số phức: + Dạng 1. Các phép tính về số phức và các bài toán định tính + Dạng 2. Biểu diễn hình học của số phức và ứng dụng + Dạng 3. Căn bậc hai của số phức và phương trình bậc hai + Dạng 4. Phương trình quy về bậc hai + Dạng 5. Dạng lượng giác của số phức + Dạng 6. Cực trị của số phức [ads] Các dạng bài tập: + Vấn đề 1. Phần thực – phần ảo + Vấn đề 2. Hai số phức bằng nhau + Vấn đề 3. Biểu diễn hình học số phức + Vấn đề 4. Phép cộng – phép trừ hai số phức + Vấn đề 5. Nhân hai số phức + Vấn đề 6. Số phức liên hợp + Vấn đề 7. Mô đun của số phức + Vấn đề 8. Phép chia số phức + Vấn đề 9. Lũy thừa đơn vị ảo + Vấn đề 10. Phương với hệ số thực + Vấn đề 11. Tập hợp các điểm biểu diễn số phức + Vấn đề 12. Bài toán min – max trong số phức
Bài tập trắc nghiệm tổng ôn số phức - Đoàn Trí Dũng
Tài liệu gồm 14 trang tuyển tập 150 bài tập trắc nghiệm tổng ôn số phức có đáp án chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Gọi z1, z2 là hai nghiệm của phương trình 2z^2 − 3z + 7 = 0. Tính giá trị của biểu thức z1 + z2 − z1.z2? + Gọi M là điểm biểu diễn của số phức z = 3 − 4i và M’ là điểm biểu diễn của số phức z’ = (1 + i)/2.z trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM’. + Giả sử A, B, C lần lượt là các điểm biểu diễn trên mặt phẳng phức của các số phức z1 = 1 + i, z2 = (1 + i)^2, z3 = a − i trong đó a ∈ Z. Để tam giác ABC vuông tại B thì giá trị của a là? + Cho các số phức a, b, c đôi một phân biệt và lần lượt có các điểm biểu diễn là A, B, C trong mặt phẳng tọa độ Oxy. Nếu (a − c)/(b − c) là một số thực thì mệnh đề nào sau đây đúng? [ads] A. A, B, C là ba đỉnh một tam giác B. A, B, C là ba điểm thẳng hàng C. A, B, C cùng nằm trên một đường tròn D. A, B, C là ba trong bốn đỉnh một hình vuông + Điểm M trong hình vẽ là điểm biểu diễn số phức z. Khi đó phần thực và phần ảo của số phức z là: A. Phần thực bằng 4 và phần ảo bằng -2 B. Phần thực bằng -2 và phần ảo bằng 4 C. Phần thực bằng -4 và phần ảo bằng 2 D. Phần thực bằng 2 và phần ảo bằng 4