Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 9 tập 1 - Trần Công Dũng

Tài liệu gồm 59 trang, được biên soạn bởi thầy giáo Trần Công Dũng, bao gồm tóm tắt lý thuyết, phương pháp giải toán và bài tập luyện tập môn Toán 9 tập 1, theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : Chương 1 Căn bậc hai, căn bậc ba 3. A Căn bậc hai 3. I Tóm tắt lý thuyết 3. II Phương pháp giải toán 3. B Căn thức bậc hai và hằng đẳng thức √A2 = |A| 5. I Tóm tắt lí thuyết 5. II Phương pháp giải toán 5. + Dạng 1. Điều kiện để √A có nghĩa 5. + Dạng 2. Sử dụng hằng đẳng thức √A2 = |A| 5. + Dạng 3. Giải phương trình 6. III Bài tập tự luyện và nâng cao 6. C Liên hệ giữa phép nhân, phép chia và phép khai phương 8. I Tóm tắt lí thuyết 8. II Các dạng toán 8. III Bài tập tự luyện và nâng cao 9. D Biến đổi đơn giản và rút gọn biểu thức chứa căn bậc hai 10. I Tóm tắt lí thuyết 10. II Các dạng toán 10. + Dạng 1. Đưa thừa số ra ngoài dấu căn, đưa thừa số vào bên trong dấu căn 10. + Dạng 2. Khử mẫu của biểu thức dưới dấu căn – Phép nhân liên hợp 11. III Bài tập rèn luyện 12. E Bài tập ôn chương 1 15. + Dạng 1. Rút gọn biểu thức số 15. + Dạng 2. Giải phương trình chứa căn thức đơn giản 16. + Dạng 3. Rút gọn biểu thức chứa căn thức 17. Chương 2 HÀM SỐ BẬC NHẤT 21. A Nhắc lại và bổ sung khái niệm về hàm số 21. I Tóm tắt lí thuyết 21. II Các dạng toán 21. + Dạng 1. Tìm giá trị của hàm số, biến số 21. + Dạng 2. Toán thực tế về hàm số 22. B Hàm số bậc nhất 24. I Tóm tắt lý thuyết 24. II Phương pháp giải toán 24. III Bài tập luyện tập 25. C Tương giao hai đường thẳng 27. I Tóm tắt lí thuyết 27. II Phương pháp giải toán 27. III Bài tập luyện tập 28. D Hệ số góc của đường thẳng 29. I Tóm tắt lí thuyết 29. II Phương pháp giải toán 29. + Dạng 1. Hệ số góc của đường thẳng 30. + Dạng 2. Lập phương trình đường thẳng biết hệ số góc 30. III Bài tập tự luyện 31. E Bài tập ôn chương 2 31. Chương 1 HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 37. A Một số hệ thức về cạnh và đường cao của tam giác vuông 37. I Tóm tắt lí thuyết 37. II Phương pháp giải toán 37. + Dạng 1. Giải các bài toán định lượng 38. + Dạng 2. Giải các bài toán định tính 38. III Bài tập tự luyện 39. B Tỉ số lượng giác 41. I Tóm tắt lí thuyết 41. II Phương pháp giải toán 41. III Bài tập tự luyện 41. C Ứng dụng thực tế hệ thức lượng trong tam giác vuông 43. Chương 2 ĐƯỜNG TRÒN 49. A Sự xác định đường tròn 49. I Tóm tắt lí thuyết 49. B Đường kính và dây của đường tròn 50. C Liên hệ giữa dây và khoảng cách từ tâm đến dây 50. I Bài tập rèn luyện 50. D Vị trí tương đối giữa đường thẳng và đường tròn – Dấu hiệu nhận biết đường tròn 52. I Tóm tắt lí thuyết 52.

Nguồn: toanmath.com

Đọc Sách

Phương trình bậc hai, hệ thức Vi-ét và ứng dụng - Dương Minh Hùng
Tài liệu gồm 26 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề phương trình bậc hai, hệ thức Vi-ét và ứng dụng, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Công thức nghiệm. 2. Công thức nghiệm thu gọn. 3. Định lí Vi-ét. 4. Ứng dụng Vi-ét (nhẫm nghiệm đặc biệt của phương trình bậc hai). 5. Các ứng dụng vào giải toán chứa tham số. B. Phân dạng toán cơ bản Dạng 1. Giải phương trình quy về bậc nhất. Dạng 2. Giải phương trình bậc hai. Dạng 3. Tính giá trị biểu thức nghiệm dùng Vi-ét. Dạng 4. Toán tham số m với ứng dụng định lý Vi-ét. C. Bài tập rèn luyện
Các phép toán về căn thức - Dương Minh Hùng
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, phân dạng và hướng dẫn giải các dạng toán về chủ đề căn thức, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 và ôn thi vào lớp 10 môn Toán. A. Tóm tắt lý thuyết 1. Căn bậc hai số học. 2. Liên hệ giữa phép nhân với phép khai phương. 3. Liên hệ giữa phép chia với phép khai phương. 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai. B. Phân dạng toán cơ bản Dạng 1. Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Dạng 2. Tính giá trị biểu thức chứa căn. Dạng 3. Rút gọn biểu thức chứa căn. Dạng 4. Rút gọn và tính giá trị biểu thức chứa căn. C. Bài tập rèn luyện
Phương pháp giải các dạng toán căn bậc hai, căn bậc ba
Tài liệu gồm 54 trang, tóm tắt kiến thức trọng tâm và hướng dẫn phương pháp giải các dạng toán căn bậc hai, căn bậc ba, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số chương 1. Bài 1 . Căn bậc hai. Bài 2 . Căn thức bậc hai và hằng đẳng thức √A^2 = |A|. + Dạng 1. Tìm căn bậc hai số học của một số. + Dạng 2. So sánh các căn bậc hai số học. + Dạng 3. Giải phương trình, bất phương trình. + Dạng 4. Tìm điều kiện để √A có nghĩa. + Dạng 5. Rút gọn biểu thức dạng √A^2. Bài 3 . Liên hệ giữa phép nhân và phép khai phương. + Dạng 1. Khai phương một tích. + Dạng 2. Nhân các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Biến đổi một biểu thức về dạng tích. + Dạng 5. Giải phương trình. + Dạng 6. Chứng minh bất đẳng thức. Bài 4 . Liên hệ giữa phép chia và phép khai phương. + Dạng 1. Khai phương một thương. + Dạng 2. Chia các căn bậc hai. + Dạng 3. Rút gọn, tính giá trị của biểu thức. + Dạng 4. Giải phương trình. Bài 5 . Bảng căn bậc hai. Bài 6 – Bài 7 . Biến đổi đơn giản biểu thức chứa căn thức bậc hai. + Dạng 1. Đưa thừa số ra ngoài dấu căn. + Dạng 2. Đưa thừa số vào trong dấu căn. + Dạng 3. Khử mẫu của biểu thức lấy căn. + Dạng 4. Trục căn thức ở mẫu. + Dạng 5. So sánh hai số. + Dạng 6. Rút gọn biểu thức. Bài 8 . Rút gọn biểu thức chứa căn thức bậc hai. + Dạng 1. Rút gọn biểu thức chỉ có cộng, trừ căn thức. + Dạng 2. Rút gọn biểu thức có chứa các phép cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. + Dạng 3. Rút gọn rồi tính giá trị của biểu thức hoặc rút gọn rồi tìm giá trị của biểu thức để biểu thức có một giá trị nào đó. + Dạng 4. Rút gọn biểu thức rồi chứng minh biểu thức có một tính chất nào đó hoặc tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Dạng 5. Chứng minh đẳng thức. Bài 9 . Căn bậc ba. + Dạng 1. Tìm căn bậc ba của một số. + Dạng 2. So sánh. + Dạng 3. Thực hiện các phép tính. + Dạng 4. Giải phương trình.
Phương pháp giải các dạng toán hàm số bậc nhất
Tài liệu gồm 58 trang, tóm tắt kiến thức trọng tâm và hướng dẫn phương pháp giải các dạng toán hàm số bậc nhất, giúp học sinh lớp 9 tham khảo khi học chương trình Toán 9 phần Đại số chương 2. Bài 1 . Nhắc lại và bổ sung các khái niệm về hàm số. Bài 2 . Hàm số bậc nhất. + Dạng 1. Tìm tập xác định (TXĐ) của hàm số. + Dạng 2. Tính giá trị của hàm số khi biết giá trị của biến số. Tính giá trị của biến số khi biết giá trị của hàm số. + Dạng 3. Biểu diễn điểm trên mặt phẳng tọa độ. Xác định khoảng cách giữa hai điểm trên mặt phẳng. + Dạng 4. Điểm thuộc đồ thị. Điểm không thuộc đồ thị của hàm số. + Dạng 5. Xác định hàm số bậc nhất. + Dạng 6. Xác định tính đồng biến, nghịch biến của hàm số. Bài 3 . Đồ thị của hàm số y = ax + b (a khác 0). + Dạng 1. Điểm thuộc đường thẳng. Điểm không thuộc đường thẳng. + Dạng 2. Xác định đường thẳng. + Dạng 3. Vẽ đồ thị của hàm số y = ax + b (a khác 0). Bài 4 . Đường thẳng song song và đường thẳng cắt nhau. + Dạng 1. Nhận dạng cặp đường thẳng song song với nhau, cặp đường thẳng cắt nhau, cặp đường thẳng vuông góc với nhau. + Dạng 2. Xác định đường thẳng với quan hệ song song. + Dạng 3. Xác định đường thẳng với quan hệ vuông góc. Bài 5 . Hệ số góc của đường thẳng y = ax + b (a khác 0). + Dạng 1. Xác định hệ số góc của đường thẳng. + Dạng 2. Xác định góc. + Dạng 3. Xác định đường thẳng. Ôn tập chương II. + Dạng 1. Vẽ đồ thị của hàm số bậc nhất. + Dạng 2. Xác định đường thẳng. + Dạng 3. Cực trị.