Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán - Lư Sĩ Pháp (Tập 1)

giới thiệu đến các em tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán (Tập 1) do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 158 trang tổng hợp các dạng toán và bài tập các chuyên đề thuộc chương trình Giải tích 12. Chuyên đề 1 . Ứng dụng của đạo hàm – Khảo sát và vẽ đồ thị hàm số – Bài toán liên quan (Trang 01 – 39) + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho. + Dạng 2. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó. + Dạng 3. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (a;b). + Dạng 4. Tìm các điểm cực trị của hàm số y = f(x). + Dạng 5. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0. + Dạng 6. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán. + Dạng 7. Tìm GTLN – GTNN của hàm số trên đoạn [a;b]. Xét hàm số y = f(x). + Dạng 8. Tìm GTLN – GTNN của hàm số chứa căn thức. + Dạng 9. Tìm GTLN – GTNN của hàm số trên một khoảng (a;b). + Dạng 10. Ứng dụng vào bài toán thực tế. + Dạng 11. Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên. + Dạng 12. Tìm các đường tiệm cận của hàm số nhất biến. + Dạng 13. Tìm các đường tiệm đứng của hàm số khác. + Dạng 14. Khảo sát sự biến thiên và vẽ đồ thị hàm số. + Dạng 15. Biện luận số giao điểm của hai đồ thị. + Dạng 16. Biện luận số nghiệm của phương trình bằng đồ thị. + Dạng 17. Viết phương trình tiếp tuyến. + Dạng 18. Sự tiếp xúc của các đường cong. [ads] Chuyên đề 2 . Lũy thừa – Mũ – Lôgarit. Phương trình, bất phương trình Mũ – Lôgarit và các bài toán ứng dụng thực tế (Trang 40 – 77) + Dạng 1. Xét tính đúng sai của một mệnh đề. + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit. + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước. + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit. + Dạng 5. Tập xác định của hàm số. + Dạng 6. Tính đạo hàm. + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình. + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế. Chuyên đề 3 . Nguyên hàm – Tích phân – Ứng dụng của tích phân trong hình học (Trang 78 – 124) + Dạng 1. Nguyên hàm và các phương pháp tìm nguyên hàm. + Dạng 2. Tích phân và các phương pháp tính tích phân. + Dạng 3. Ứng dụng của tích phân trong hình học. Chuyên đề 4 . Số phức (Trang 125 – 154) + Dạng 1. Số phức và các phép toán trên số phức. + Dạng 2. Phương trình bậc hai. + Dạng 3. Cực trị số phức. + Dạng 4. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Ở mỗi chuyên đề, nội dung tài liệu được chia thành 2 phần: + Phần 1 . Phần lý thuyết: Ở phần này thầy Lư Sĩ Pháp trình bày đầy đủ lý thuyết cần nắm cho mỗi chuyên đề và các dạng toán cần nắm. + Phần 2 . Phần trắc nghiệm: Bài tập trắc nghiệm có đáp án theo các chuyên đề, đa dạng, phong phú và bám sát cấu trúc đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Nội dung của cuốn tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán – Lư Sĩ Pháp (Tập 1) bám sát chương trình chuẩn và chương trình nâng cao môn Giải tích 12 đã được Bộ Giáo dục và Đào tạo quy định.

Nguồn: toanmath.com

Đọc Sách

87 bài toán thực tế có lời giải chi tiết - Nguyễn Tiến Minh
Tài liệu gồm 49 trang cung cấp một số công thức thường gặp trong bài toán thực tế, kèm theo 87 câu trắc nghiệm có lời giải chi tiết. Trích dẫn tài liệu : + Ông A vay ngắn hạn ngân hàng 100 triệu đồng, với lãi suất 12% trên năm. Ông muốn hoàn nợ cho ngân hàng theo cách sau: sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng ba tháng kể từ ngày vay. Hỏi, theo cách đó, số tiền m mà ông A phải trả cho ngân hàng theo cách đó là bao nhiêu? Biết rằng, lãi suất ngân hàng không thay đổi trong thời gian ông A hoàn nợ. [ads] + Theo dự báo với mức tiêu thụ dầu không đổi như hiện nay thì trữ lượng dầu của nước A sẽ hết sau 100 năm nữa. Nhưng do nhu cầu thực tế, mức tiêu thụ tăng lên 4% mỗi năm. Hỏi sau bao nhiêu năm số dầu dự trũ của nước A sẽ hết. + Biết rằng năm 2001, dân số Việt Nam là 78.685.800 người và tỉ lệ tăng dân số năm đó là 1,7%. Cho biết sự tăng dân số được ước tính theo công thức: S = A.e^(Nr) (trong đó A: là dân số của năm lấy làm mốc tính, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm). cứ tăng dân số với tỉ lệ như vậy thì đến năm nào dân số nước ta ở mức 120 triệu người.
Một số phương pháp giải nhanh toán trắc nghiệm bằng máy tính bỏ túi - Nguyễn Vũ Thụ Nhân
Tài liệu gồm 43 trang của tác giả Nguyễn Vũ Thụ Nhân trình bày các mẹo giải nhanh toán trắc nghiệm bằng cách sử dụng máy tính Casio.
Chuyên đề ứng dụng của toán học phổ thông vào thực tiễn
Tài liệu gồm 68 trang hướng dẫn phương pháp giải các bài toán ứng dụng thực tiễn trong nhiều tình huống thực tế khác nhau trong cuộc sống. Có lẽ ai đã từng học toán, đang học toán đều có suy nghĩ rằng toán học ngoài những phép tính đơn giản như cộng, trừ nhân chia … thì hầu hết các kiến thức toán khác là rất trừu tượng đối với học sinh. Vì vậy việc học toán trở thành một áp lực nặng nề đối với học sinh. Họ nghĩ rằng toán học là mơ hồ xa xôi, học chỉ là học mà thôi. Học sinh học toán chỉ có một mục đích duy nhất đó là thi cử. Hình như ngoài điều đó ra các em không biết học toán để làm gì.Vì vậy họ có quyền nghi ngờ rằng liệu toán học có ứng dụng vào thực tế được không nhỉ? [ads] Sự thật là toán học có rất nhiều ứng dụng vào thực tế và nó thể hiện rất rõ trong cuộc sống hằng ngày của con người nhưng chúng ta không để ý mà thôi. Với mục đích giúp cho học sinh thấy rằng toán học là rất gần gũi với cuộc sống xung quanh, hoàn toàn rất thực tế và việc tiếp thu các kiến thức toán ở nhà trường không chỉ để thi cử mà nó còn là những công cụ đắc lực để giúp các em giải quyết các vấn đề, tình huống đơn giản trong thực tế.
Casio skill trắc nghiệm - Nguyễn Thế Anh, Nguyễn Thế Lực
Tài liệu Casio skill trắc nghiệm ver 1.0 của 2 tác giả Nguyễn Thế Anh và Nguyễn Thế Lực gồm 386 trang với các nội dung: [ads]