Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long - Hà Nội

Nhằm giúp học sinh ôn tập, chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020, ngày 24 tháng 02 năm 2019 vừa qua, trường THPT Thăng Long, Hà Nội đã tiến hành tổ chức kỳ thi thử môn Toán dành cho các em học sinh khối lớp 9. Đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long – Hà Nội gồm 1 trang, đề được biên soạn dựa vào cấu trúc đề Toán tuyển sinh vào lớp 10 THPT năm học 2018 – 2019 của sở GD&ĐT Hà Nội với 5 bài toán tự luận, học sinh làm bài trong 120 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi thử Toán vào lớp 10 THPT đợt 1 năm 2019 trường Thăng Long – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Cho một hình chữ nhật biết khi tăng độ dài của chiều rộng lên 1 cm và chiều dài lên 4 cm thì diện tích hình chữ nhật sẽ tăng thêm 26 cm2 và khi tăng chiều rộng thêm 3 cm đồng thời giảm chiều dài đi 4 cm thì được hình vuông. Tính chiều dài và chiều rộng của hình chữ nhật đã cho. + Cho điểm A thuộc đường thẳng d và đường thẳng d, vuông góc với d tại A. Trên d, lấy điểm O và vẽ đường tròn tâm O bán kính R sao cho R < OA. Cho M là một điểm bất kỳ trên đường thẳng d, vẽ tiếp tuyến MB với đường tròn (O) (B là tiếp điểm). Vẽ dây BC của đường tròn (O) sao cho BC vuông góc với OM và cắt OM tại N. 1) Chứng minh MC là tiếp tuyến của đường tròn (O). 2) Chứng minh năm điểm A, B, C, O, M thuộc cùng một đường tròn. 3) Chứng minh BC.OM = 2BO.BM. Xác định vị trí của điểm M trên đường thẳng d sao cho diện tích từ giác OBMC đạt giá trị nhỏ nhất. 4) Chứng minh rằng khi M di chuyển trên đường thẳng d thì điểm N luôn thuộc một đường cố định.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 Toán (chuyên) 2022 - 2023 trường chuyên Lê Quý Đôn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 Toán (chuyên) 2022 – 2023 trường chuyên Lê Quý Đôn – BR VT : + Cho tam giác ABC nhọn AB AC nội tiếp đường tròn tâm O và có ba đường cao AD BE CF cắt nhau tại H. Gọi I J lần lượt là trung điểm của AH và BC. a) Chứng minh rằng IJ vuông góc với EF và IJ song song với OA. b) Gọi K Q lần lượt là giao điểm của EF với BC và AD. Chứng minh rằng QE KE QF KF. c) Đường thẳng chứa tia phân giác của FHB cắt AB AC lần lượt tại M và N. Tia phân giác của CAB cắt đường tròn ngoại tiếp tam giác AMN tại điểm P khác A. Chứng minh ba điểm H P J thẳng hàng. + Cho tam giác ABC cố định có diện tích S. Đường thẳng d thay đổi đi qua trọng tâm của tam giác ABC cắt các cạnh AB AC lần lượt tại M N. Gọi 1 2 S S lần lượt là diện tích các tam giác ABN và ACM. Tìm giá trị nhỏ nhất của 1 2 S S. + Cho các số thực a b c d thỏa mãn 2 ac b d. Chứng minh phương trình sau luôn có nghiệm 2 2 x ax b x cx d.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tiền Giang; kỳ thi được diễn ra vào ngày 17 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Tiền Giang : + Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = −2x + 3. 1. Vẽ parabol (P). Bằng phép tính, tìm toạ độ các giao điểm (P) và (d). 2. Viết phương trình đường thẳng (d′) song song với (d) và tiếp xúc (P). Tính toạ độ tiếp điểm M của (d′) và (P). + Một xe tải đi theo hướng từ A đến B cách nhau 210 km. Sau 2 giờ, cũng trên quãng đường đó, một ô tô khởi hành theo hướng từ B đến A với vận tốc lớn hơn vận tốc xe tải 10 km/h. Tính vận tốc xe tải, biết hai xe gặp nhau tại nơi cách A một khoảng bằng 150 km. + Cho tam giác ABC có ba góc nhọn. Kẻ các đường cao AD và BE (D ∈ BC và E ∈ AC). 1. Chứng minh tứ giác ABDE nội tiếp đường tròn và xác định tâm O của đường tròn đó. 2. Chứng minh rằng CD·CB = CE·CA. 3. Giả sử ACB d = 60◦ và AB = 6 cm. Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OD, OE và cung nhỏ DE của đường tròn (O).
Đề tuyển sinh lớp 10 môn Toán năm 2022 trường Thực Hành Cao Nguyên - Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 trường THPT Thực Hành Cao Nguyên, tỉnh Đắk Lắk; kỳ thi được diễn ra vào ngày 18 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 trường Thực Hành Cao Nguyên – Đắk Lắk : + Một ô tô và một xc máy khởi hành cùng một lúc từ hai tinh cách nhau 200 km đingược chiều và gặp nhau sau 2 giờ. Tìm vận tốc của ô tô và xe máy, biết rằng nếu vận tốc của ô tô tăng thêm 10 km/h và vận tốc của xe máy giảm đi 5 km/h thì vận tốc của ô tô sẽ gấp 2 lần vận tốc của xe máy. + Cho đường tròn tâm O đường kính AB. Gọi C D là hai điểm thuộc O và nằm khác phía đối với đường thẳng AB. Gọi E F lần lượt là trung điểm hai dây AC và AD. 1) Tính tổng 2 2 AC BC biết bán kính đường tròn O bằng 3cm. 2) Chứng minh bốn điểm A O E F cùng thuộc một đường tròn. 3) Đường thẳng EF cắt đường tròn ngoại tiếp tam giác ADE tại điểm K khác E. Chứng minh đường thẳng DK là tiếp tuyến của đường tròn O. + Không sử dụng máy tính cầm tay, giải hệ phương trình sau?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Bình Phước
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Bình Phước : + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O bán kính R. Gọi H là trực tâm của tam giác ABC, M là điểm bất kì trên cung nhỏ BC. Gọi I J lần lượt là hình chiếu của M lên các đường thẳng BC CA. Đường thẳng IJ cắt đường thẳng AB tại K. a) Chứng minh bốn điểm BKM I cùng thuộc một đường tròn. Từ đó suy ra MK AB. b) Gọi 123 MM M lần lượt là các điểm đối xứng của M qua các đường thẳng BC CA AB. Chứng minh bốn điểm 123 MM M và H thẳng hàng. c) Chứng minh khi điểm M di động trên cung nhỏ BC ta luôn có M M R BAC 2 3 4 sin. Xác định vị trí của điểm M khi dấu bằng xảy ra. + Giải phương trình nghiệm nguyên: 2 2 x y xy y x 6 2 7 0. + Cho x y là các số nguyên thỏa mãn 2 2 x y 2021 2022 chia hết cho xy. Chứng minh rằng x y là các số lẻ và nguyên tố cùng nhau.