Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 phòng GDĐT Vĩnh Bảo - Hải Phòng

Thứ Sáu ngày 29 tháng 05 năm 2020, phòng Giáo dục và Đào tạo huyện Vĩnh Bảo, thành phố Hải Phòng tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Vĩnh Bảo – Hải Phòng gồm 02 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Máy thở là một thiết bị công nghệ hữu ích, có tác dụng hỗ trợ hô hấp cho những người rất kém hoặc không còn khả năng tự hô hấp. Đây là thiết bị sống còn giúp chống chọi với bệnh Covid-19 của các bệnh nhân đã mắc ở thể nặng. Theo ước tính có khoảng 10% bệnh nhân mắc bệnh Covid-19 phải dùng đến máy thở, do đó khi dịch bệnh bùng phát thì trên thế giới sẽ thiếu hụt nghiêm trọng các thiết bị này. Để chủ động ứng phó dịch bệnh, một nhà máy được giao sản xuất 360 chiếc máy thở trong một thời gian hạn định. Trước tình hình dịch bệnh Covid 19 diễn biến hết sức phức tạp, xác định trách nhiệm tham gia bảo vệ sức khỏe cộng đồng nên nhà máy đã nâng cao năng lực sản xuất bằng cách tiến hành cải tiến kỹ thuật đồng thời kết hợp tăng ca để quyết tâm rút ngắn thời gian hoàn thành kế hoạch. Chính vì vậy, trên thực tế mỗi ngày nhà máy đã sản xuất tăng thêm 3 máy nên hoàn thành sớm trước 6 ngày so với kế hoạch được giao. Hỏi theo kế hoạch thì mỗi ngày nhà máy phải sản xuất bao nhiêu chiếc máy thở. [ads] + Cho đường tròn (O) đường kính AB. Lấy điểm C nằm trên đường kính AB và điểm D trên đường tròn (O) (các điểm C, D không trùng với A và B). Gọi E là điểm chính giữa cung nhỏ BD. Đường thẳng EC cắt đường tròn tại điểm thứ hai F. Gọi G là giao điểm của DF và AE. a) Chứng minh BAE = DFE và AGCF là tứ giác nội tiếp. b) Chứng minh CG vuông góc với AD. c) Kẻ đường thẳng đi qua C song song với AD cắt DF tại H. Chứng minh CH = CB. + Quay hình chữ nhật ABCD quanh cạnh AB một vòng ta được một hình trụ. Tính thể tích của hình trụ đó biết rằng AB = 2.AD = 4cm.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán thi vào 10 năm 2022 2023 phòng GD ĐT Ba Đình Hà Nội
Nội dung Đề khảo sát Toán thi vào 10 năm 2022 2023 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán thi vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Ba Đình Hà Nội Đề khảo sát Toán thi vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Ba Đình Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Đây là đề khảo sát môn Toán luyện thi tuyển sinh vào lớp 10 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội. Kì thi sẽ diễn ra vào thứ Sáu ngày 29 tháng 04 năm 2022. Bài thi bao gồm các câu hỏi, đáp án chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề khảo sát: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đội sản xuất phải làm 10,000 khẩu trang trong một thời gian quy định. Nhờ cải tiến kĩ thuật, mỗi ngày đội sản xuất được thêm 200 khẩu trang. Hỏi số khẩu trang mà đội sản xuất phải làm trong một ngày theo dự định. 2. Tính dung tích của thùng nước hình trụ có bán kính đáy 0,2m và chiều cao 0,4m. (Bỏ qua bề dày của thùng nước, lấy pi = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai). 3. Cho đường tròn O, R có hai đường kính AB và CD vuông góc với nhau. Chứng minh tứ giác OHEB là tứ giác nội tiếp và giải các câu hỏi liên quan đến tỉ lệ và tìm vị trí của điểm I trên đoạn thẳng OB. Chúc quý thầy cô và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề Toán định hướng vào 10 năm 2022 lần 2 trường Trần Mai Ninh Thanh Hóa
Nội dung Đề Toán định hướng vào 10 năm 2022 lần 2 trường Trần Mai Ninh Thanh Hóa Bản PDF - Nội dung bài viết Đề Toán định hướng vào lớp 10 năm 2022 trường Trần Mai Ninh Thanh Hóa Đề Toán định hướng vào lớp 10 năm 2022 trường Trần Mai Ninh Thanh Hóa Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bộ đề thi môn Toán định hướng tuyển sinh vào lớp 10 năm học 2021 - 2022 lần 2 của trường THCS Trần Mai Ninh, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 16 tháng 04 năm 2022. Đề Toán định hướng vào lớp 10 năm 2022 lần 2 trường Trần Mai Ninh - Thanh Hóa bao gồm các câu hỏi sau: Cho điểm P trên đoạn thẳng MN, vẽ tia Mx, Ny vuông góc với MN. Kẻ tia vuông góc với PI tại P và cắt tia Ny tại K; đường tròn đường kính IP cắt IK tại Q. Chứng minh Tứ giác PQKN nội tiếp và xác định tâm của đường tròn đó. Định vị điểm P trên đoạn thẳng MN sao cho tứ giác MNKI có diện tích lớn nhất. Cho x, y, z là ba số thực dương thoả mãn x + y + z = 2. Tìm giá trị lớn nhất của biểu thức P. Đề Toán này không chỉ kiểm tra kiến thức mà còn đề cao kỹ năng giải quyết vấn đề, tư duy logic của học sinh. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề kiểm tra Toán 9 thi vào 10 năm 2024 - 2025 đợt 2 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra rà soát chất lượng học sinh môn Toán 9 chuẩn bị thi vào lớp 10 năm học 2024 – 2025 đợt 2 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra Toán 9 thi vào 10 năm 2024 – 2025 đợt 2 phòng GD&ĐT Ứng Hòa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô xuôi dòng trên một khúc sông dài 90 km rồi ngược dòng về 63 km. Biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 1 giờ và vận tốc khi xuôi dòng hơn vận tốc ngược dòng là 6km/h. Tính vận tốc ca nô lúc xuôi dòng và lúc ngược dòng. + Một hình nón có bán kính đáy bằng 5 cm và diện tích xung quanh là 65pi cm2. Tính thể tích của khối nón đó (làm tròn kết quả đến chữ số thập phân thứ hai). + Trong hệ tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 3. a. Tìm các điểm nằm trên parabol (P) có tung độ bằng 4. b. Tìm m để (d) cắt (P) tại hai điểm phân biệt A và B sao cho SAOB = 6 (đvdt).
Đề minh họa tuyển sinh lớp 10 môn Toán năm 2024 - 2025 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 – 2025 sở Giáo dục và Đào tạo thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn Đề minh họa tuyển sinh lớp 10 môn Toán năm 2024 – 2025 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một người lái xe máy để giao một gói hàng từ địa điểm A đến địa điểm B với vận tốc không đổi trên quảng đường dài 30km. Khi giao hàng xong, người đó đi từ B trở về A trên cùng quãng đường với vận tốc lớn hơn vận tốc lúc đi là 10km/h. Biết thời gian đi nhiều hơn thời gian về là 15 phút, tính vận tốc của người đó lúc đi từ A đến B. + Một chiếc nón lá có dạng hình nón với đường kính đáy bằng 44cm, độ dài đường sinh là 30cm. Người ta lát mặt ngoài xung quanh hình nón bằng 3 lớp lá khô. Tính diện tích lá cần dùng để tạo nên một chiếc nón lá như vậy. + Cho tam giác ABC (AB > AC) nội tiếp đường tròn (O). Gọi M là trung điểm của BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ M đến các đường thẳng AB, AC. 1) Chứng minh bốn điểm A, E, M, F cùng thuộc một đường tròn. 2) Đường thẳng AM cắt đường tròn (O) tại điểm thứ hai là K. Chứng minh KBC = MEF và BC.ME = EF.BK. 3) Gọi J là trung điểm của EF. Chứng minh AO song song với JM.