Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Thừa Thiên Huế

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Thừa Thiên Huế Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Thừa Thiên Huế Trong quá trình học tập, kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức đóng vai trò quan trọng không chỉ đối với học sinh mà còn đánh dấu quãng đường tốt nghiệp khối Trung học Cơ sở. Một trong những môn thi bắt buộc và quan trọng nhất trong kỳ thi này chính là môn Toán. Để giúp quý thầy, cô giáo, phụ huynh và học sinh tham khảo, chúng tôi xin giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Thừa Thiên Huế. Kỳ thi được diễn ra vào ngày ..../06/2019. Trích dẫn một số câu hỏi trong đề tuyển sinh: 1. Hưởng ứng Ngày Chủ nhật xanh, một trường THCS đã cử học sinh của hai lớp 9A và 9B cùng tham gia làm tổng vệ sinh một con đường. Tính thời gian để hai lớp học sinh làm xong công việc nếu làm riêng biết rằng lớp 9A làm xong công việc sớm hơn lớp 9B 2 giờ. 2. Tính thể tích của lượng nước còn lại trong chiếc cốc kích thước định sẵn sau khi thả vào một viên bi hình cầu và một vật hình nón. 3. Giải hệ phương trình: 4x – y = 7 và x + 3y = 5 mà không sử dụng máy tính cầm tay. Với những câu hỏi trên, học sinh cần phải tìm ra cách giải đúng, chính xác để có kết quả tốt nhất trong kỳ thi tuyển sinh vào lớp 10. Hy vọng rằng nội dung này sẽ giúp ích cho quý vị trong việc chuẩn bị cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 - 2022 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An; đề thi được dành cho các thí sinh thi vào trường THPT chuyên Phan Bội Châu (Nghệ An) và trường THPT chuyên – trường Đại học Vinh (Nghệ An); đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Gọi M là trung điểm của cạnh BC và H là trực tâm của tam giác ABC. Tia MH cắt đường tròn (O) tại K, đường thẳng AH cắt cạnh BC tại D và đường thẳng AO cắt đường tròn (O) tại E (E khác A). a) Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. b) Tia KD cắt đường tròn (O) tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng BC cắt AM tại J. Chứng minh rằng các đường thẳng AK, BC và HJ cùng đi qua một điểm. c) Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB, AC lần lượt tại P, Q phân biệt. Gọi N là trung điểm của P Q. Chứng minh rằng AN luôn đi qua một điểm cố định. + Cho 676 số nguyên tố khác nhau. Chứng minh rằng có ít nhất hai số trong các số đã cho mà hiệu của chúng chia hết cho 2022. + Tìm số nguyên dương n để n − 23 n + 89 là bình phương một số hữu tỉ dương.
Đề Toán (chuyên) thi vào 10 năm 2021 - 2022 trường chuyên Lê Quý Đôn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán (chuyên) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Bảy ngày 05 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Quảng Trị; đề thi được dành cho thí sinh thi chuyên Toán; kỳ thi được diễn ra vào sáng thứ Năm ngày 03 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đồng Nai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT tỉnh Đồng Nai; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đồng Nai : + Tìm giá trị của tham số thực m để Parabol 2 Pyx và đường thẳng 2 3 dy x m có đúng một điểm chung. + Cho phương trình 2 x x 5 40. Gọi 1 2 x x là hai nghiệm của phương trình. Không giải phương trình, hãy tính giá trị biểu thức 2 2 1 2 12 Q x x xx. + Hằng ngày bạn Mai đi học bằng xe đạp, quãng đường từ nhà đến trường dài 3km. Hôm nay, xe đạp hư nên Mai nhờ mẹ chở đi đến trường bằng xe máy với vận tốc lớn hơn vận tốc khi đi xe đạp là 24 km h, cùng một thời điểm khởi hành như mọi ngày nhưng Mai đã đến trường sớm hơn 10 phút. Tính vận tốc của bạn Mai khi đi học bằng xe đạp.