Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa kỳ thi tuyển sinh THPT năm học 2018 2019 môn Toán sở GD và ĐT TP. HCM

Nội dung Đề minh họa kỳ thi tuyển sinh THPT năm học 2018 2019 môn Toán sở GD và ĐT TP. HCM Bản PDF - Nội dung bài viết Đề minh họa kỳ thi tuyển sinh THPT năm học 2018-2019 môn Toán sở GD và ĐT TP. HCM Đề minh họa kỳ thi tuyển sinh THPT năm học 2018-2019 môn Toán sở GD và ĐT TP. HCM Đề minh họa kỳ thi tuyển sinh lớp 10 THPT năm học 2018 – 2019 môn Toán sở Giáo dục và Đào tạo thành phố Hồ Chí Minh gồm 10 bài toán tự luận, thời gian làm bài 120 phút. Đề thi có lời giải chi tiết. Trích dẫn đề thi: + Một con robot được thiết kế có thể đi thẳng, quay một góc 90 độ sang phải hoặc sang trái. Robot xuất phát từ vị trí A đi thẳng 1 m, quay sang trái rồi đi thẳng 1 m, quay sang phải rồi đi thẳng 3 m, quay sang trái rồi đi thẳng 1 m đến đích tại vị trí B. Tính theo đơn vị mét khoảng cách giữa đích đến và nơi xuất phát của robot (ghi kết quả gần đúng chính xác đến 1 chữ số thập phân). + Thực hiện chương trình khuyến mãi “Ngày Chủ Nhật Vàng” một của hàng điện máy giảm giá 50% trên 1 ti vi cho lô hàng ti vi gồm có 40 cái với giá được bán lẻ trước đó là 6.500.000 đồng/cái. Đến trưa cùng ngày thì cửa hàng đã bán được 20 cái và của hàng quyết định giảm giá thêm 10% nữa (so với giá đã giảm lần 1) cho số ti vi còn lại. a. Tính số tiền mà cửa hàng thu được sau khi bán hết lô hàng ti vi. b. Biết rằng giá vốn là 2.850.000 đồng/cái ti vi. Hỏi của hàng lời hay lỗ khi bán hết lô hàng ti vi đó? + Kính lão đeo mắt của người già thường là một loại thấu kính hội tụ. Bạn Năm đã dùng một chiếc kính lão của ông ngoại để tạo ra hình ảnh của một cây nến trên tấm màn. Cho rằng cây nến là một vật sangscos hình dạng đoạn thẳng AB đặt vuông góc với trục chính của một thấu kính hội tụ, cách thấu kính đoạn OA = 2 m. Thấu kính có quang tâm O và tiêu điểm F. Vật AB cho ảnh thật A B' ' gấp ba lần AB. Tính tiêu cự OF của thấu kính. + Có 45 người gồm bác sĩ và luật sư, tuổi trung bình của họ là 40. Tính số bác sĩ, luật sư biết rằng tuổi trung bình của bác sĩ là 35, tuổi trung bình của luật sư là 50. + Một vệ tinh nhân tạo địa tĩnh chuyển động theo một quỹ đạo tròn cách bề mặt trái đất khoảng 36000 km, tâm quỹ đạo vệ tinh trùng với tâm O của Trái Đất. Vệ tinh phát tín hiệu vô tuyến theo đường thẳng đến một vị trí trên mặt đất. Hỏi vị trí xa nhất trên trái đất có thể nhận được tín hiệu từ vệ sịn này ở cách vệ tinh một khoảng bao nhiêu km. Biết rằng Trái Đất được xem như một hình cầu có bán kính khoảng 6400 km.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K [ads] 1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn 2) Chứng minh NB.NK = NM^2 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác vuông có số đo các cạnh là các số tự nhiên có hai chữ số. Nếu đổi chỗ hai chữ số của số đo cạnh huyền ta được số đo một cạnh góc vuông. Tính bán kính đường tròn ngoại tiếp tam giác đó. + Cho 2n+1 số nguyên, trong đó có đúng một số 0 và các số 1, 2, 3 … n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành một dãy sao cho với mọi m = 1, 2 … n có đúng m số nằm giữa hai số m.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A ,đường cao AH .Gọi (P) và (Q) theo thứ tự là đường tròn nội tiếp của tam giác AHB và tam giác AHC. Kẻ tiếp tuyến chung ngoài (khác BC) của hai đường tròn (P) và (Q) nó cắt AB, AH, AC theo thứ tự ở M, K, N [ads] 1. Chứng minh tam giác HPQ đồng dạng với tam giác ABC 2. Chứng minh PK song song với AB và tứ giác BMNC nội tiếp 3. Chứng minh năm điểm A, M, P, Q, N cùng nằm trên một đường tròn 4. Gọi I là tâm đường tròn ngoại tiếp tam giác ABC, biết AB=a, AC=3a. Một đường thẳng thay đổi đi qua H cắt đường tròn ngoại tiếp tam giác ABC tại D và E. Tính giá trị lớn nhất của diện tích tam giác IDE theo a
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cần Thơ gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Để chuẩn bị tham gia hội khỏe phù đổng cấp trường, thầy Thành là giáo viên chủ nhiệm lớp 9A tổ chức cho học sinh trong lớp thi đấu môn bóng bàn ở nội dung đánh đôi nam nữ (một nam kết hợp một nữ). Thầy Thành chọn 1/2 số học sinh nam kết hợp với 5/8 số học sinh nữ của lớp để lập thành các cặp thi đấu. Sau khi đã chọn được số học sinh tham gia thi đấu thì lớp 9A còn lại 16 học sinh làm cổ động viên. Hỏi lớp 9A có tất cả bao nhiêu học sinh? [ads] + Cho tam giác ABC có ba góc nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB AC , lần lượt tại các điểm D và E. Gọi H là giao điểm của hai đường thẳng CD và BE a) Chứng minh tứ giác ADHE nội tiếp trong một đường tròn. Xác định tâm I của đường tròn này b) Gọi M là giao điểm của AH và BC. Chứng minh CM.CB = CE.CA c) Chứng minh ID là tiếp tuyến của đường tròn (O) d) Tính theo R diện tích của tam giác ABC, biết góc ABC = 45 độ, góc ACB = 60 độ và BC = 2R