Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Dương

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Một đường tròn (O’) thay đổi, luôn đi qua B, C và cắt các cạnh AB, AC theo thứ tự ở D, E. Gọi D’, E’ lần lượt là các điểm đối xứng với D, E qua trung điểm các cạnh AB, AC. a) Chứng minh rằng trung điểm D’E’ luôn thuộc một đường thẳng cố định. b) Trên cung nhỏ và cung lớn BC của (O), lần lượt lấy các điểm R, S sao cho (DER), (DES) tiếp xúc trong với (O). Phân giác trong của các góc BRC, BSC cắt nhau ở K. Chứng minh rằng đường tròn (DEK) luôn tiếp xúc với đường thẳng BC. + Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x;y) thỏa mãn đồng thời hai điều kiện: i) x, y thuộc N và ii) 0 ≤ x ≤ y ≤ 2023. a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập A (A con S) gồm 2023 phần tử của S sao cho A không chứa hai điểm nào có cùng hoành độ hoặc cùng tung độ? + Cho số nguyên n ≥ 1. Tìm số lượng lớn nhất các cặp gồm 2 phần tử phân biệt của tập {1; 2; …; n} sao cho tổng của các cặp khác nhau là các số nguyên khác nhau và không vượt quá n.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi tỉnh Toán THPT GDTX năm 2022 - 2023 sở GDĐT Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT & GDTX năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Lắk; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT & GDTX năm 2022 – 2023 sở GD&ĐT Đắk Lắk : + Cho hàm số y = f(x) = x3 − 3×2 + mx + 1 có đồ thị (Cm) với m là tham số. 1) Tìm tất cả các giá trị thực của m để đồ thị (Cm) có hai điểm cực trị. 2) Khi (Cm) có hai điểm cực trị A và B, tìm m để khoảng cách từ điểm là I đến đường thẳng AB lớn nhất. + Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn (O). Gọi S là tập hợp các đường thẳng đi qua 2 đỉnh bất kỳ của đa giác. Chọn ngẫu nhiên hai đường thẳng từ tập S. Tìm xác suất để chọn được hai đường thẳng có giao điểm nằm trong đường tròn (O). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA = AB = a, SB = SD. Lấy M là điểm tùy ý trên đoạn thẳng OA (M khác O và A). Mặt phẳng (a) qua M, song song với SA và BD, cắt AB, SB, SD, AD lần lượt tại E, F, G, H. 1) Tứ giác EFGH là hình gì? Vì sao? 2) Xác định vị trí của M để diện tích tứ giác EFGH đạt giá trị lớn nhất.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GDĐT Ninh Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; đề thi gồm 05 câu tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Bảy ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Gieo 5 con súc sắc cân đối, đồng chất. Kí hiệu xi (1 ≤ xi ≤ 6) là số chấm trên mặt xuất hiện của con súc sắc thứ i (i = 1, 2, 3, 4, 5). Tính xác suất để một trong các số x1, x2, x3, x4, x5 bằng tổng các số còn lại. + Cho tam giác ABC nhọn, không cân. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là một điểm tùy ý trên cạnh BC (khác B, C, D). Kẻ MK là đường kính của đường tròn ngoại tiếp tam giác BKF và NK là đường kính của đường tròn ngoại tiếp tam giác CKE. Gọi L là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CKE. 1) Chứng minh rằng năm điểm A, F, H, L, E cùng nằm trên một đường tròn. 2) Chứng minh rằng bốn điểm M, H, L, N thẳng hàng. + Tìm tất cả các số có ba chữ số sao cho mỗi số gấp 22 lần tổng các chữ số đó.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Lào Cai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.