Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4)

Nội dung Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Bản PDF - Nội dung bài viết Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Đề thi thử Toán lớp 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) bao gồm 1 trang với 4 bài toán dạng tự luận. Học sinh có thời gian làm bài trong 150 phút. Kỳ thi này được tổ chức nhằm giúp học sinh ôn tập và chuẩn bị cho kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020. Trích dẫn một số câu hỏi từ đề thi thử Toán lớp 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4): Với a, b, c là các số thực dương thỏa mãn ab + bc + ca = 1. Hãy tìm giá trị lớn nhất của biểu thức P = a/(1 + a^2) + b/(1 + b^2) – c/(1 + c^2). Đề cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Tiếp tuyến qua B, C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E, F. Câu hỏi đặt ra bao gồm việc chứng minh hai tam giác OEF và ABC đồng dạng, chứng minh rằng DJ || BC với J là tâm đường tròn ngoại tiếp tam giác OEF, và chứng minh rằng AT chia đôi đoạn thẳng OK với K là trực tâm tam giác OEF. Với x > 1, chứng minh rằng từ tập con A có n + 2 số của tập {1, 2, 3 ... 3n} luôn có thể chọn ra 2 số mà hiệu của chúng lớn hơn n và nhỏ hơn 2n. Đề thi thử này không chỉ giúp học sinh quen với cấu trúc và dạng bài trong kỳ thi sắp tới, mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phản xạ nhanh nhạy trong việc giải các bài toán phức tạp.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 12 tháng 02 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Lê Ngọc Hân – Hà Nội : + Để chuẩn bị cho công tác phòng chống dịch COVID – 19 khi học sinh quay trở lại trường học trực tiếp, nhà trường dự định mua khẩu trang và dung dịch sát khuẩn với tổng số tiền là 8 triệu đồng. Tuy nhiên, vì cửa hàng có chương trình ưu đãi dành cho trường học, giá khẩu trang giảm 10%, giá dung dịch sát khuẩn giảm 15% nên nhà trường chỉ phải trả 7 triệu đồng. Hỏi số tiền ban đầu dự định để mua khẩu trang là bao nhiêu? + Trong mặt phẳng Oxy, cho đường thẳng (d): y m 1 x 2m m 1 a) Với m = 2, tìm giao điểm của (d) với đường thẳng (d1): y 3x 2 b) Với giá trị nào của m để (d) song song với đường thẳng (d2) y x c) Đường thẳng (d) cắt trục Ox tại điểm B, cắt trục Oy tại điểm A. Tìm m sao cho diện tích tam giác OAB bằng 1 (đvdt). + Cho hai biểu thức: 2 4 2 x x A x và 2 4 2 2 4 x xx B với x x 0 4 1) Tính giá trị của biểu thức A khi x = 9. 2) Chứng minh: 2 x B x. 3) Đặt P AB. So sánh P và 2. 4) Tìm giá trị nguyên dương nhỏ nhất của P.
Đề khảo sát Toán 9 tháng 01 năm 2022 trường M.V. Lômônôxốp - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát Toán 9 tháng 01 năm 2022 trường THCS & THPT M.V. Lômônôxốp – Hà Nội.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Tây Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề kiểm tra khảo sát chất lượng môn Toán lớp 9 năm học 2021 – 2022 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 14 tháng 01 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Tây Sơn – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một cái bể không có nước thì sau 6 giờ bể sẽ đầy nước. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2 5 bể. + Cho hai hàm số y m 3x m 1 và y 2x 3 có đồ thị lần lượt là (d1) và (d2) a) Với m = 1, tìm tọa độ giao điểm của hai đường thẳng trên. b) Chứng minh rằng điểm cố định mà đường thẳng (d1) luôn đi qua thuộc đường thẳng (d) có phương trình: y 3x 1. + Cho ∆ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD, CE cắt nhau tại H. 1) Chứng minh rằng: 4 điểm B, E, D, C cùng thuộc một đường tròn. 2) Chứng minh rằng: AE.AB = AD.AC. 3) Vẽ đường kính AK của đường tròn (O). Gọi I là trung điểm của BC. a) Chứng minh rằng: ba điểm H, I, K thẳng hàng. b) Chứng minh rằng: ED < 2OI.
Đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ - Hà Nội
Đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề). Trích dẫn đề khảo sát Toán 9 tháng 1 năm 2022 trường THCS Nguyễn Trường Tộ – Hà Nội : + Cho hệ phương trình mx y m x my (m là tham số). a) Giải hệ phương trình khi m = 2. b) Tìm m để đường thẳng (1) cắt đường thẳng (2) tại một điểm cách đều các trục tọa độ. + Cho đường tròn tâm O có dây AB R 2. Đường kính CD vuông góc với AB tại I (D thuộc cung nhỏ AB). Trên tia đối của tia BA lấy điểm E sao cho ACE nhọn. CE cắt (O) tại K, nối DK cắt AB tại M. a) Chứng minh 4 điểm C, I, M, K cùng thuộc một đường tròn. b) Chứng minh EM EI EB EA c) Chứng minh DK là phân giác của góc AKB. Tìm vị trí điểm E trên tia đối của tia BA (vẫn thỏa mãn đề bài) để M là trung điểm của BI. + Cho các số thực x, y thỏa mãn x xy y Chứng minh x y 0.