Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 12 năm 2020 - 2021 trường THPT Hưng Nhân - Thái Bình

Ngày 28 tháng 11 năm 2020, trường THPT Hưng Nhân, tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng học sinh giỏi khối 12 môn Toán năm học 2020 – 2021. Đề khảo sát HSG Toán 12 năm 2020 – 2021 trường THPT Hưng Nhân – Thái Bình mã đề 101 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát HSG Toán 12 năm 2020 – 2021 trường THPT Hưng Nhân – Thái Bình : + Một kim tự tháp Ai Cập được xây dựng khoảng 2500 năm trước công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 150 m, cạnh đáy dài 220 m. Hỏi diện tích xung quanh của kim tự tháp đó bằng bao nhiêu? (diện tích xung quanh của hình chóp là tổng diện tích của các mặt bên). + Ông An gửi 320 triệu đồng vào ngân hàng ACB và VietinBank theo phương thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng ACB với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất 0,73% một tháng trong thời gian 9 tháng. Biết tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng. Hỏi số tiền ông An lần lượt ở hai ngân hàng ACB và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)? A. 120 triệu đồng và 200 triệu đồng. B. 200 triệu đồng và 120 triệu đồng. C. 140 triệu đồng và 180 triệu đồng. D. 180 triệu đồng và 140 triệu đồng. + Giả sử trong trận chung kết AFF Cup 2018, đội tuyển Việt Nam phải phân định thắng thua trên chấm đá phạt 11 m. Biết xác suất để mỗi cầu thủ Việt Nam thực hiện thành công quả đá 11 m của mình đều là 0,8. Gọi p là xác suất để đội tuyển Việt Nam thực hiện thành công từ 4 quả trở lên trong 5 lượt sút đầu tiên. Khẳng định nào sau đây đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG thành phố môn Toán năm 2018 2019 sở GD và ĐT Hải Phòng
Nội dung Đề thi chọn HSG thành phố môn Toán năm 2018 2019 sở GD và ĐT Hải Phòng Bản PDF Đề thi chọn HSG thành phố môn Toán năm 2018 – 2019 sở GD và ĐT Hải Phòng bảng B (bảng không chuyên) được biên soạn theo hình thức tự luận với 7 bài toán, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 02 tháng 11 năm 2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG thành phố môn Toán năm 2018 – 2019 sở GD và ĐT Hải Phòng : + Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất để sau 3 bước đi quân vua trở về ô xuất phát. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD tâm E, gọi G là trọng tâm tam giác ABE. Điểm K (7;-2) thuộc đoạn ED sao cho GA = GK. Tìm tọa độ đỉnh A và viết phương trình cạnh AB, biết đường thẳng AG có phương trình 3x – y – 13 = 0 và đỉnh A có hoành độ nhỏ hơn 4. + Cho hàm số y = x^3 + 3x^2 – 9x + 1 có đồ thị là (C). Gọi A, B là hai điểm cực trị của (C). Tính diện tích của tam giác OAB, trong đó O là gốc tọa độ.
Đề thi chọn HSG cấp tỉnh lớp 12 môn Toán THPT năm 2018 2019 sở GD và ĐT Thừa Thiên Huế
Nội dung Đề thi chọn HSG cấp tỉnh lớp 12 môn Toán THPT năm 2018 2019 sở GD và ĐT Thừa Thiên Huế Bản PDF Kỳ thi chọn HSG cấp tỉnh Toán lớp 12 THPT năm 2018 – 2019 sở GD và ĐT Thừa Thiên Huế được diễn ra vào sáng ngày hôm qua (ngày 14/11/2018), đề gồm 1 trang với 6 bài toán tự luận, học sinh làm bài trong thời gian 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi tác giả N.V Sơn). Trích dẫn đề thi chọn HSG cấp tỉnh Toán lớp 12 THPT năm 2018 – 2019 sở GD và ĐT Thừa Thiên Huế : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng Δ: 5x – 2y – 19 = 0 và đường tròn (C): x^2 + y^2 – 4x-2y = 0. Từ một điểm M nằm trên đường thẳng Δ kẻ hai tiếp tuyến MA, MB đến đường tròn (C) với A, B là hai tiếp điểm. Viết phương trình đường tròn ngoại tiếp tam giác AMB biết AB = √10. [ads] + Cho tập A = {0;1;2;3;4;5;6}. Gọi S là tập hợp các số tự nhiên gồm 5 chữ số khác nhau được chọn từ các phần tử của tập A. Chọn ngẫu nhiên 1 số từ tập S. Tính xác suất để số được chọn chia hết cho 15. + Cho tam giác đều OAB có AB = a. Trên đường thẳng (d) đi qua O vuông góc với mặt phẳng (DAB) lấy một điểm M sao cho OM = x. Gọi E, F lần lượt là hình chiếu vuông góc của A lên MB và OB. Đường thẳng EF cắt đường thẳng (d) tại N. Chứng minh rằng AN vuông góc với BM. Xác định x theo a để thể tích khối tứ diện ABMN nhỏ nhất và tính giá trị nhỏ nhất đó.
Đề thi chọn học sinh giỏi cấp huyện lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Cao Bằng
Nội dung Đề thi chọn học sinh giỏi cấp huyện lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Cao Bằng Bản PDF Đề thi chọn học sinh giỏi cấp huyện Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Cao Bằng gồm 1 trang với 6 bài toán tự luận, đề được biên soạn nhằm tuyển chọn các em học sinh giỏi Toán lớp 12 để bồi dưỡng và tạo điều kiện để các em tham gia các kỳ thi HSG Toán ở cấp cao hơn như thi học sinh giỏi cấp tỉnh, cấp quốc gia … đề thi có lời giải chi tiết. Trích dẫn đề thi chọn học sinh giỏi cấp huyện Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Cao Bằng : + Một khách sạn có 50 phòng. Nếu mỗi phòng cho thuê với giá 400 ngàn đồng một ngày thì toàn bộ phòng được thuê hết. Biết rằng cứ mỗi lần tăng giá lên 20 ngàn đồng thì có thêm hai phòng bỏ trống không có người thuê. Hỏi giám đốc khách sạn phải chọn giá phòng mới là bao nhiêu để thu nhập của khách sạn trong ngày là lớn nhất? [ads] + Một đội ngũ cán bộ khoa học gồm 8 nhà Toán học nam, 5 nhà Vật lý nữ và 3 nhà Hóa học nữ. Người ta chọn ra từ đó 4 người để đi công tác, tính xác suất sao cho trong 4 người được chọn phải có nữ và có đủ ba bộ môn. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh AB: x – y – 2 = 0, phương trình cạnh AC: x + 2y – 5 = 0. Biết trọng tâm của tam giác G(3;2). Xác định tọa độ điểm A và viết phương trình cạnh BC.
Đề thi KSCL đội tuyển HSG lớp 12 môn Toán năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Nội dung Đề thi KSCL đội tuyển HSG lớp 12 môn Toán năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc Bản PDF Đề thi KSCL đội tuyển HSG Toán lớp 12 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc được biên soạn theo hình thức tự luận với 1 trang và 7 bài toán, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi KSCL đội tuyển HSG Toán lớp 12 năm 2018 – 2019 trường Yên Lạc 2 – Vĩnh Phúc : + Một hộp đựng 9 tấm thẻ được đánh số từ 1 đến 9. Hỏi phải rút ít nhất bao nhiêu thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho 4 phải lớn hơn 5/6. + Cho hàm số y = (2x – 4)/(x + 1) có đồ thị là (C) và hai điểm M (-3;0), N(-1;-1). Tìm trên đồ thị hàm số (C) hai điểm A, B sao cho chúng đối xứng nhau qua đường thẳng MN. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = 3, BC = 6, mặt phẳng (SAB) vuông góc với đáy, các mặt phẳng (SBC) và (SCD) cùng tạo với mặt phẳng (ABCD) các góc bằng nhau. Biết khoảng cách giữa hai đường thẳng SA và BD bằng 6. Tính thể tích khối chóp S.ABCD và cosin góc giữa hai đường thẳng SA và BD. File WORD (dành cho quý thầy, cô):