Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề lũy thừa, mũ và logarit - Lư Sĩ Pháp

Tài liệu gồm 179 trang được biên soạn bởi thầy Lư Sĩ Pháp phân dạng và hướng dẫn giải các bài toán trắc nghiệm – tự luận chuyên đề lũy thừa, mũ và logarit trong chương trình Giải tích 12 chương 2. Nội dung của cuốn tài liệu bám sát chương trình chuẩn và chương trình nâng cao về môn Toán đã được Bộ Giáo dục và Đào tạo quy định. Nội dung tài liệu được chia thành 2 phần chính: Phần 1 . Phần tự luận: Ở phần này tôi trình bày đầy đủ lí thuyết và bài tập có hướng dẫn giải ở từng bài học. Với mong muốn mong các em nắm được phương pháp giải bài tập trước khi chuyển sang giải Toán trắc nghiệm. Phần 2 . Phần trắc nghiệm có đáp án: Ở phần này tôi trình bày tóm tắt các lý thuyết cần nắm, kĩ năng làm bài trắc nghiệm, hướng dẫn sử dụng máy tính cầm tay cần thiết trong quá trình làm bài trắc nghiệm. [ads] Phần 1 . Hàm số Lũy Thừa – Mũ – Lôgarit Bài 1. Lũy Thừa Bài 2. Hàm Số Lũy Thừa Bài 3. Lôgarit Bài 4. Hàm Số Mũ – Hàm Số Lôgarit Ôn Tập Hàm Số Lũy Thừa – Mũ – Lôgarit Phần 2 . Phương Trình – Hệ Phương Trình – Bất Phương Trình Mũ – Lôgarit Bài 1. Phương Trình Mũ Bài 2. Phương Trình Lôgarit Bài 3. Hệ Phương Trình Mũ – Lôgarit Bài 4. Bất Phương Trình Mũ Bài 5. Hệ Phương Trình Lôgarit Ôn tập Phương Trình – Hệ Phương Trình – Bất Phương Trình Mũ – Lôgarit TRẮC NGHIỆM CHƯƠNG II Bài 1. Lũy thừa – Hàm số lũy thừa Bài 2. Lôgarit Bài 3. Hàm Số Mũ – Hàm Số Lôgarit Bài 4. Phương Trình – Hệ Phương Trình – Bất Phương Trình Mũ – Lôgarit Ôn tập chương II Một số câu trong kì thi THPT Đáp án

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2020 môn Toán Phương trình - bất phương trình - GTLN - GTNN mũ và logarit
Tài liệu gồm 96 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: phương trình và bất phương trình mũ và logarit, GTLN – GTNN (max – min) mũ và logarit; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình – bất phương trình – GTLN – GTNN mũ và logarit: A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT 1. Phương pháp đưa về cùng cơ số. + Phương trình và bất phương trình mũ cơ bản. + Phương trình logarit và bất phương trình logarit cơ bản. 2. Phương pháp đặt ẩn phụ. + Đặt ẩn phụ cho phương trình mũ. + Đặt ẩn phụ cho phương trình logarit. 3. Phương pháp hàm số. + Cơ sở lý thuyết và vận dụng cơ sở lý thuyết để tìm hướng giải. + Một số loại toán cơ bản thường gặp khi sử dụng đơn điệu hàm số. [ads] B. BÀI TOÁN CHỨA THAM SỐ + Dạng 1. Tìm m để f(t;m) = 0 có nghiệm (hoặc có k nghiệm) trên D. + Dạng 2. Tìm m để bất phương trình f(t;m) ≥ 0 hoặc f(t;m) ≤ 0 có nghiệm trên miền D. C. GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT MŨ VÀ LOGARIT
Tổng ôn tập TN THPT 2020 môn Toán Hàm số lũy thừa - hàm số mũ - hàm số logarit
Tài liệu gồm 60 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hàm số lũy thừa – hàm số mũ – hàm số logarit, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hàm số lũy thừa – hàm số mũ – hàm số logarit: A. Biến đổi công thức B. Hàm số lũy thừa – mũ – logarit + Hàm lũy thừa. + Hàm số mũ. + Hàm số logarit. + Đồ thị hàm số mũ. + Đồ thị hàm số logarit. [ads] C. Bài toán thực tế 1. Lãi đơn. 2. Lãi kép. 3. Bài toán tăng trưởng dân số. 4. Vay vốn trả góp. 5. Tiền gửi hàng tháng. D. Phương trình – bất phương trình cơ bản 1. Đạo hàm của hàm số mũ và lôgarit. 2. Phương trình mũ – lôgarit. 3. Bất phương trình mũ và lôgarit. 4. Các phương pháp giải phương trình, bất phương trình mũ và lôgarit.
Bài toán logarit qua nhiều góc nhìn
Tài liệu gồm có 90 trang được biên soạn bởi các tác giả: Minh Chung và Dương Đình Tuấn, tuyển chọn 60 bài toán trắc nghiệm logarit có đáp án và lời giải chi tiết. Đây không phải là tổng hợp những bài toán logarit hay nhất mà nó bao gồm những bài toán logarit mang đến những tư duy hay nhất. Lời giải trong tài liệu ít nhiều có đôi chỗ không đúng với thuần tự luận hay những lí thuyết SGK vì vậy các bạn chỉ nên đọc tham khảo là chính. Trích dẫn tài liệu bài toán logarit qua nhiều góc nhìn: + Trong các nghiệm (x;y) thỏa mãn bất phương trình log x^2 + 2y^2 (2x + y) ≥ 1. Giá trị lớn nhất của biểu thức T = 2x + y bằng? + Cho các số thực dương a, b, c thỏa mãn 5log22a + 16log22b + 27log22c = 1. Giá trị lớn nhất của S = ∑log2a.log2b bằng? [ads] + Cho phương trình √(1 – m + log2x) + √(4m + 2 – log2x) = m với m là tham số thực. Biết m = m0 là giá trị để phương trình trên có đúng một nghiệm thực. Khẳng định nào dưới đây đúng? + Lấy đạo hàm cấp 2019 của hàm số f(x) = x^2.e^x ta được hàm số g(x), tính tổng các nghiệm của phương trình g(x) = 0. + Có bao nhiêu giá trị nguyên dương của m nhỏ hơn 2018 để tồn tại duy nhất cặp số (x;y) thỏa mãn log2(x + y) + logm(x – y) = 1 và x^2 – y^2 = m.
Phương trình logarit có chứa tham số
Tài liệu gồm 25 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán phương trình logarit có chứa tham số, được phát triển dựa trên câu 43 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu phương trình logarit có chứa tham số: A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT Ta thường sử dụng các phương pháp sau: + Phương pháp 1. Phương pháp đưa về cùng cơ số. + Phương pháp 2. Phương pháp đặt ẩn phụ. + Phương pháp 3. Phương pháp hàm số. [ads] B. BÀI TẬP MẪU 1. Bài toán Cho phương trình $\log _2^2(2x) – (m + 2){\log _2}x + m – 2 = 0$ ($m$ là tham số thực). Tập hợp tất cả các giá trị của $m$ để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn $[1;2]$ là? 2. Phân tích hướng dẫn giải 1. Dạng toán: Đây là dạng toán tìm điều kiện của tham số để phương trình logarit có nghiệm thỏa mãn điều kiện cho trước. 2. Hướng giải: + Bước 1: Viết lại phương trình logarit về dạng phương trình bậc hai đối với 1 biểu thức logarit. + Bước 2: Đặt ẩn phụ là biểu thức logarit và tìm điều kiện cho ẩn phụ. + Bước 3: Tìm điều kiện cho phương trình ẩn phụ. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN