Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Nguyễn Thị Định - BR VT

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 trường THCS Nguyễn Thị Định, huyện Long Điền, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 22 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Nguyễn Thị Định – BR VT : + Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ 1 2 x x thỏa mãn 1 2 x x 1. + Một máy bay phản lực cất cánh từ vị trí A (như hình vẽ) bay lên với một góc 300 so với đường băng có phương nằm ngang, sau một thời gian 30 giây máy bay đạt được độ cao 3000 mét so với đường băng. Tính vận tốc trung bình của máy bay trong trường hợp này (làm tròn đến hàng đơn vị). + Cho đường tròn tâm O bán kính R và một đường thẳng d không cắt đường tròn O. Dựng đường thẳng OH vuông góc với đường thẳng d tại điểm H. Trên đường thẳng d lấy điểm K (khác điểm H), qua K vẽ hai tiếp tuyến KA và KB với đường tròn O (A và B là các tiếp điểm) sao cho A và H nằm về hai phía của đường thẳng OK a) Chứng minh tứ giác KAOH là tứ giác nội tiếp. b) Đường thẳng AB cắt đường thẳng OH tại điểm I. Chứng minh rằng IA IB IH IO c) Chứng minh I là điểm cố định khi điểm K chạy trên đường thẳng d cố định. d) Khi OK R OH R 2 3. Tính diện tích tam giác KAI theo R.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm học 2020 2021 sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh môn Toán năm học 2020 2021 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An Đề thi tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 của sở GD&ĐT Nghệ An bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài thi cho học sinh là 120 phút. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An: Cho phương trình \(x^2 - 4x - 3 = 0\) có hai nghiệm phân biệt \(x_1, x_2\). Không giải phương trình, hãy tính giá trị của biểu thức \(T = \frac{x_1^2}{x_2} + \frac{x_2^2}{x_1}\). Trong tháng hai năm 2020, hai lớp 9A và 9B của một trường THCS đã sản xuất 250 chai nước rửa tay sát khuẩn. Tính tổng số chai nước rửa tay sát khuẩn mà mỗi lớp đã sản xuất trong tháng hai nếu tổng sản phẩm của cả hai lớp vượt mức 22% so với tháng hai. Cho tứ giác \(ABCD\) nội tiếp đường tròn tâm \(O\) đường kính \(AB\). Chứng minh rằng tứ giác \(ADEH\) là tứ giác nội tiếp và thực hiện các phần bài tập khác liên quan đến tứ giác \(ABCD\). Đề tuyển sinh môn Toán lớp 10 năm học 2020 - 2021 sở GD&ĐT Nghệ An đưa ra các bài toán đa dạng, giúp học sinh rèn luyện khả năng tư duy logic và giải quyết vấn đề. Hy vọng rằng các em sẽ tự tin và thành công khi tham gia kỳ thi tuyển sinh.
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bến Tre (chung)
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bến Tre (chung) Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) Đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung) được áp dụng cho tất cả các thí sinh dự thi vào các lớp 10 Trung học Phổ thông Công lập. Bài thi bao gồm 08 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích đoạn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bến Tre (chung): + Khi nào thì đồ thị của hai hàm số y = x + (5 + m) và y = 2x + (7 - m) cắt nhau tại một điểm nằm trên trục hoành? + Trong tam giác ABC vuông tại B với đường cao BH (H thuộc AC), đã biết AB = 6 cm, AC = 10 cm. Hãy tính độ dài các đoạn thẳng BC và BH. + Trên đường tròn (O) lấy hai điểm A, B sao cho AOB = 65° và điểm C như hình vẽ. Tính số đo AmB, ACB và số đo ACB.
Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung)
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) là đề thi đặc biệt dành cho tất cả các thí sinh muốn thi vào các lớp chuyên Toán, Văn và Tiếng Anh. Kỳ thi dự kiến diễn ra vào ngày ... tháng 07 năm 2020. Một trong những câu hỏi trong đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) đề cập đến một lớp chuyên Anh của trường Trung học Thực hành. Trong đó, có bốn tổ học sinh với số học sinh trong mỗi tổ bằng nhau. Sau một bài kiểm tra Anh văn, một số bạn được điểm 8 và các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Vấn đề đặt ra là cần tìm số học sinh trong lớp và số bạn được điểm 9 trong bài kiểm tra Anh văn. Ngoài ra, đề tuyển sinh còn đưa ra một bài toán liên quan đến việc cắt và gấp tấm tôn hình vuông để tạo thành một cái hộp không nắp. Đề bài yêu cầu tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. Đề thi cũng liên quan đến các khái niệm trong hình học như tam giác, đường tròn. Vấn đề được đặt ra là cần chứng minh rằng ba điểm B, M, E thẳng hàng trong một tam giác vuông cân. Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM mang đến cho các thí sinh những bài toán thú vị, phù hợp với trình độ học sinh và đòi hỏi sự tư duy logic, khả năng giải quyết vấn đề và kỹ năng tính toán chính xác.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định đã được công bố, nhằm chọn lọc những học sinh có khả năng xuất sắc trong lĩnh vực Toán học. Kỳ thi sẽ diễn ra vào ngày thứ Bảy, 18 tháng 07 năm 2020. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định: Tìm các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. Chứng minh rằng đối với tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O), ta có MA > MB + MC khi M là một điểm bất kì trên cung nhỏ BC. Đưa ra các chứng minh liên quan đến tứ giác AMDN, giao điểm của AB và ED, trung điểm của KL và tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh rằng HI vuông góc với EF. Đề thi không chỉ đánh giá kiến thức Toán học của thí sinh mà còn đòi hỏi khả năng tư duy logic, suy luận và giải quyết vấn đề. Hy vọng rằng các thí sinh sẽ hoàn thành kỳ thi một cách xuất sắc và thành công.